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We consider the covariance matrix, G™ = ¢*(d(c.,m); d(a,,n)), of the
d-dimensional g-states Potts model, rewriting it in the random cluster represen-
tation of Fortuin and Kasteleyn. In any of the g ordered phases, we identify the
eigenvalues of this matrix both in terms of representations of the unbroken
symmetry group of the model and in terms of random cluster connectivities
and covariances, thereby attributing algebraic significance to these stochastic
geometric quantities. We also show that the correlation length corresponding to
the decay rate of one of the eigenvalues is the same as the inverse decay rate of
the diameter of finite clusers. For dimension d = 2, we show that this correlation
length and the correlation length of the two-point function with free boundary
conditions at the corresponding dual temperature are equal up to a factor of
two. For systems with first-order transitions, this relation helps to resolve cer-
tain inconsistencies between recent exact and numerical work on correlation
lengths at the self-dual point §,. For systems with second order transitions, this
relation implies the equality of the correlation length exponents from above and
below threshold, as well as an amplitude ratio of two. In the course of proving
the above results, we establish several properties of independent interest,
including left continuity of the inverse correlation length with free boundary
conditions and upper semicontinuity of the decay rate for finite clusters in all
dimensions, and left continuity of the two-dimensional free boundary condition
percolation probability at f,. We also introduce DLR equations for the random
cluster model and use them to establish ergodicity of the free measure. In order
to prove these results, we introduce a new class of events which we call decoupl-
ing events and two inequalities for these events. The first is similar to the FKG
inequality, but holds for events which are neither increasing nor decreasing; the
second is similar to the van den Berg—Kesten inequality in standard percolation.
Both inequalities hold for an arbitrary FKG measure.
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1. INTRODUCTION: BACKGROUND AND DISCUSSION OF
RESULTS

The g-state Potts model has been the subject of increasing interest in
recent years. On the one hand, it has been studied by probabilists and
statistical mechanicists due to its relationship to the random cluster
model,"'* ! where many of the known results for percolation are open and
interesting problems. On the other hand, the phase transitions in the Potts
model provide a paradigm for testing numerical methods developed for
more complex transitions, such as deconfinement in lattice QCD: The
Potts model is relatively easy to simulate with efficient algorithms (see, e.g.,
ref. 37), it can be tuned from a second-order through a weakly first-order
to a strongly first-order transition by varying the number of states ¢, and
many quantities of interest are explicitly known for dimension d=2,
thus allowing for a direct test of numerical methods. Finally, many of the
exact results on the Potts model have recently been shown to have
fascinating algebraic interpretations (see, e.g., Section VILB in the review
of ref. 39).

Motivated by discrepancies between recent exact and numerical results
on the correlation length of the Potts model, we have undertaken to iden-
tify and study the relevant length scales in the problem. We relate these
scales both to the algebraic structure of the unbroken symmetry group and
to stochastic geometric quantities in the random cluster representation of
the Potts model. In the process, we show that the some of natural
stochastic geometric quantities one defines in the random cluster represen-
tation—e.g., the finite-cluster connectivity—have independent algebraic
significance. In two dimensions, we prove a relation between various scales
which is an extension of known relations for percolation and the Ising
magnet, and which establishes a strong form of Widom scaling for Potts
models with continuous transitions. We also prove an analog of this rela-
tion for two-dimensional Potts models with discontinuous transitions; this
analog helps to explain the apparent discrepancy between the exact and
numerical results.

Adopting a field-theoretic perspective, we identify the relevant lengths
in the model by studying the eigenvalues of the covariance matrix

sz(x_y)=<q5(axa m)’ ‘15(0}’ n))b (11)
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Here o, € {0, .., ¢ — 1} are the usual spins of the Potts model, d( -, - ) is the
Kronecker delta, (- ), is the expectation with respect to the infinite-volume
state obtained from finite-volume states with “b” boundary conditions, and
{A;BY,={(AB),— (A>,{B), is the truncated expectation of the func-
tions 4 and B. 4

In the disordered phase, we consider the covariance matrix with free
boundary conditions, Gf..(x —y). We find that this is proportional to the

standard two-point function, which in turn is equal to the connectivity
function in the random cluster representation:

1
Gt =)= (gdlm )= 1) {5 (@bl 7))~ 1)

=(‘]‘5(m, ")—I)Trree(X—Y) (12)

Here the connectivity, t..(x —»), is the probabililty with respect to the
free-boundary-condition random cluster measure that x and y lie in the
same component. That 7...(x—y) is equal to the two-point function in
finite volume is well known both to probabilists and to numerical
physicists, the latter of whom use this equivalence to measure the two-point
function according to the “improved estimators” approach. Our only con-
tribution here is to verify the equivalence in infinite volume. We note that,
in the disordered phase, the covariance matrix contains no more informa-
tion than the standard two-point function, or equivalently, the connectivity
function.

The problem is more subtle in the ordered phase, where we consider
the matrix G7"(x—y) with fixed constant boundary conditions, ce S=
{0, ..,q—1}. Defining the finite-cluster connectivity i (x—y) to be
the probability, in the so-called wired random cluster measure, that x
find y lie in the same finite component, and the infinite-cluster covariance
C,...(x —y) to be the covariance, again in the wired measure, of the events
that x and y lie in the infinite component, we prove that the matrix
elements G™(x — y) are linear combinations of ™ (x —y) and C,;(x—y),
namely

free

G™"(x—y)={(qd(m, n)—1) i (x —y) + (gé(m, c) — 1)
x(go(n, c) —1) Cyir(x ~y) (1.3)

We remark that while the finite-volume analog of (1.3) is a straightforward
consequence of the random cluster representation, the proof of the infinite-
volume limit involves some subtleties related to how the infinite cluster
emerges from large finite clusters in the wired problem (for more details,
see the remark following Proposition 3.4).
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fin

Percolation analogs of 7. (x —y) and C,;(x—y)—in the absence of
boundary conditions—have arisen previously in ref. 7, where they appeared
as a natural decomposition of the truncated percolation connectivity in the
ordered phase. There, however, they did not have independent signficance,
appearing only as a sum. The question naturally arises whether they have
independent significance here. Obviously, this is not the case for ¢ =2, for
which (1.3) can be rewritten as

G (x—y)=(26(m, n) = 1)z x —) + Coie(x )

involving again only the sum %2 (x —y) + C,;(x —y).

For g =3, however, the fixed-boundary-condition covariance matrix
G™"(x — y) has a richer structure. We prove that it has a simple eigenvalue
zero and a nontrivial simple eigenvalue

Giax—y)=gqran(x—y)+a(g—1) Coi(x —y) (14)
both corresponding to the trival representation of the unbroken subgroup
S,_1 of permutations of S\{c}, as well as one (¢—2)-fold degenerate
eigenvalue

fin

GZ(x—y)=qti(x—y) (1.5)

corresponding to the remaining orthogonal subspace.? Thus we see that for
g >3, the finite-cluster cluster connectivity, %% (x—y), has independent
algebraic significance as an eigenvalue of the covariance matrix, and hence
also physical significance in terms of the associated one-particle spectrum.
As for the infinite cluster covariance C,;(x —y), we will show in Theorem
43 that its decay rate is equal to the decay rate of the eigenvalue G!})
whenever the magnetization is positive. Thus although C,; (x —y) does not
have independent algebraic significance, its decay rate does.

For completeness, we note that the free boundary condition matrix,
Gpe(x—y), can be diagonalized as well, yielding a simple eigenvalue zero

and a (g — 1)-fold degenerate eigenvalue

Gfree(x —.V) = qTfree(x "J’) (16)

Given the eigenvalues (1.4)—(1.6), one naturally defines the inverse
correlation lengths:

3 For the Ising model (g =2), G™{(x— y) has only the trivial eigenvalue zero and the cigen-
value G4 (x —p).
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1
= — lim —lo GrreelX 1.7
BB i o 08 ) (47
! — lim log G{2(x) (1.8)

EDB)  ixi—eo IXI

and

1
—a= — lim L 1og 62(x) (1.9)
Sl B) bl = o ||

Here, as usual, f is the inverse temperature of the model. In all cases, the
limits are taken so that x lies along a coordinate axis. In order to establish
the existence of the limits, we return to the spin representation and use
reflection positivity. We also give alternative subadditive proofs of the
existence of the limits (1.7) and (1.9), which, though more complicated
than the reflection positivity arguments, have the advantage that they hold
for non-integer ¢>1 and can be used to establish additional properties.
In particular, we use subadditivity to show left continuity of the inverse
correlation length 1/&...(f#) and upper semicontinuity of the inverse corre-
lation length 1/&2)( ). We also use subadditivity arguments to prove that
E2(P) is equal to several other geometrical correlation lengths in the
problem, one of which is the decay raty of the diameter of finite clusters in
the wired measure—a quantity which should be easily accessible to numeri-
cal measurement.

All three correlation lengths coincide in the high-temperature regime,
where their common value is often denoted by £4(f). In the low-tem-
perature regime, we expect &q..(f)= co. The nontrivial correlation length
in this regime is often denoted by &, 4(f). Here, however, we see that for
g =3, there are two a priori different nontrivial lengths, ¢{})(8) and E2)(B).
Equations (1.4) and (1.5) immediately imply that

ED(BY=E2PB) (1.10)

so that the correlation length &1 of the symmetric state (ie., symmetric
with respect to §,_,) is not smaller than those of the unsymmetric states.
An interesting open question is whether or not the inequality is strict. It is
worth noting that in percolation, analogs of C,;(x—y) and ™ (x—y) in
the absence of boundary conditions have equal exponential decay rates”),
which here would imply equality of £{1)(8) and £3)(B). However, it is not

at all clear whether the Potts models for g3 should have analogous
behavior.
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We return finally to our original question, namely the discrepancy
between the exact and numerical correlation lengths of two-dimensional
Potts models with discontinuous transitions. Explicit calculations based on
a mapping to the six-vertex model yielded a correlation length &4(f,) of
the disordered phase at the self-dual point(®26-2% g, which disagreed with
previous numerical measurements®*!” of the ordered correlation length
at the transition point &_4(f,) by roughly a factor of 2, suggesting the
possible relation &,.4(8,) = 3&4i(B.).® A continuous transition analog of
this relation is already known for both two-dimensional bond percolation,
where &(p)=1&(1 —p) has been rigorously established for all p>p,, 7
and the two-dimensional Ising magnet, where &(f)=1£(8*) has been
established via exact solution for all > g, (ref. 31; see also ref. 10). Here,
as usual, ¥ is the dual inverse temperature. However, from our results dis-
cussed above, we now know that the situation is more complicated in the
g-state Potts model, ¢=3, than it is in either percolation or the Ising
magnet, since in the ordered phase the Potts model has two a priori dif-
ferent correlation lengths. One of our principal results is a relation of the
conjectured form in terms of the smaller ordered correlation length, £2).

Our result follows from a dichotomy which we prove for all two-
dimensional random cluster models with ¢ > 1. In addition to the conjec-
tured relation, the dichotomy implies Widom scaling for Potts models with
continuous transitions. Let P™(f) be the percolation probabilty in the
free-boundary-condition random cluster measure. Our dichotomy is: If
Pfee(f*) =0, then

é(»\%i)r(ﬁ)=%éfree(ﬂ*) (111)
whereas if P™(f*)> 0, then
Eieel B) = B) = CRUPB) (1.12)

In order to interpret the dichotomy, we supplement it with the two-dimen-
sional relation

PYN(B) PRe(B*)=0 (1.13)

where P¥(p) is the percolation probability in the wired measure, which is
of course equal to the spontaneous magnetization M(f). Note that (1.13)
shows that P™(8*)>0 implies M(f)=0, so that (1.12) is simply the
equality of the three correlation lengths in the high-temperature regime, as
mentioned earlier.

Our more interesting corollaries follow from the first branch of the
dichotomy, ie., the duality relation (1.11). In order to see this, we
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combine (1.13) with the obvious bound P¥(f)>P™(B) to obtain
Pfee( B)Pee(f*) =0, so that P™(f,)=0. Since P**(f*) is an increasing
function of f*, this in turn implies

PTe(B*)=0  forall B=8, (1.14)

Equation (1.14) implies in particular that P™(f) is left continuous at the
self-dual point f,. Moreover, it means that that the first branch of the
dichotomy [ie., Eq. (1.11)] holds throughout the low-temperature phase
B=f,. For systems with first-order transitions, this implies the conjectured
relation at §,:

f(wzi)r(ﬂo)=%¢l'r:‘.e(ﬂa) (115)

For systems with second-order transitions, (1.11) is a generalization of the
aforementioned results on two-dimensional percolation'”” and the Ising
magnet.®" In particular, it gives a strong form of Widom scaling as
B B, If &g (B*) diverges with critical exponent v, &p.o(f*) ~ |f* —F,1 ™7
as f*18,, (1.11) implies that ¢£{2(B) diverges with the same exponent:
EoB)~1B—B| "7 as BB, with F=v.

As noted above, the interpretation (and in fact the proof) of the
dichotomy (1.11) and (1.12) requires the relation (1.13), which we obtain
as a special case of a general two-dimensional result of Gandolfi, Keane,
and Russo (GKR).!'®) However, in order to apply the GKR theorem, we
need to know that the free random measure is ergodic, a result which we
establish in all dimensions. We prove ergodicity by introducing suitable
DLR equations®? for the random cluster problem. Here the justification
of the DLR equations is much more delicate than in standard spin systems
due to the nonlocal nature of the random cluster weights: because of this
nonlocality, the specification used to construct the DLR states is not
quasilocal, and thus standard theorems do not apply.

Before reviewing the organization of the paper, let us briefly discuss
our methods. These methods are necessarily quite different from those used
in the analysis of the Bernoulli percolation model, since the random cluster
model lacks several properties which are used extensively in percolation
—namely, independence of events occurring on fixed disjoint sets and the
van den Berg-Kesten (BK ) inequality for events occurring on random
disjoint sets. ‘Moreover, the random cluster model has an additional
feature—boundary conditions—which significantly complicates its analysis
relative to the independent model. However, it is by actually focusing on
the boundary conditions that we are able to circumvent the other dif-
ficulties and in fact derive two correlation inequalities which we expect will
be useful in many other contexts. We do this by noting that in many cases,
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the events of interest carry with them boundary conditions which decouple
them from other events and thus effectively overcome the coupling of the
random cluster weights. This idea is formalized by introducing the notion
of decoupling events. We use our decoupling events in formulating and
proving two sets of inequalities which effectively replace independence and
the BK inequality. The independence is replaced by a relation which resem-
bles the FKG inequality, but contains two decoupling events and holds for
a much larger class of events than the original FKG inequality—in par-
ticular, for events which are neither increasing nor decreasing. The BK
inequality is replaced by a relation which resembles the independent BK
inequality but contains a decoupling event. Both inequalities hold for any
FKG measure, and thus in particular for the free and wired random cluster
measures with ¢ > 1.

The organization of this paper is as follows. In first two parts of Sec-
tion 2, we review the necessary properties of the standard spin and random
cluster representations of the Potts model. The third part of Section 2 con-
tains our inequalities for decoupling events. In the last part of the section,
we derive the DLR equation and establish ergodicity of the free measure.
Section 3 is concerned with the covariance matrix. In the first part of the
section, we derive the finite- and infinite-volume representations of the
matrix with free and constant boundary conditions, in particular estab-
lishing the infinite-volume limits of 7 (x —¥), ¥ (x—y), and C(x —y)
from their finite-volume analogs. The matrix is diagonalized in the second
part of Section 3. Section 4 concerns the correlation lengths &g, ¢\\), and
&2 In the first part of the section, we establish existence of the lengths
using reflection positivity, as reviewed in the appendix. The second part of
the section concerns alternative characterizations of &g, £\, and &2),
proved via subadditivity arguments and our inequalities for decoupling
events. In particular, we show that 1/ is left continuous and 1/£) is
upper semicontinuous; we prove that £(1) is the decay rate of C,,;, whenever
the magnetization is positive; and we establish that £(2) coincides with the
decay rate of the diameter of finite clusters, as well as with the limiting
decay rate of connectivity functions for clusters in boxes. Section 5 contains
our proof of the two-dimensional dichotomy (1.11) and (1.12), as well as
derivations of a few results on two-dimensional percolation probabilities.
The first part of this section contains a discussion of the heuristics of the
duality relation (1.11) in terms of the behavior of interfaces in.the system.
In the second and third parts of the section, we prove upper and lower
bounds of the form needed for the duality relation (1.11). Finally, in the
fourth part of the section, we combine these upper and lower bounds with
several results from Section 4 and the relation (1.13) to obtain our
dichotomy.
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Note Added. After submission of this Paper, we learned that
G. Grimmett has simultaneously obtained results®"’ which parallel some of
those in our Section 2.4. In particular, Grimmett also introduces DLR
equations and gives a very nice proof that both the free and the wired
measure are Gibbs states. He then draws some of the same conclusions as
we do in our corollaries to Theorem 5.5. The emphasis and the main results
of the two papers are, however, very different: while Grimmett focuses on
states of the random cluster model, we focus on the decay of correlations
in the random cluster model, and correlation inequalities for general FKG
measures.

2. PRELIMINARIES

2.1. Definition of the Spin Model

We consider the g-states Potts ferromagnet, a model with spins o, in
the set S={0, 1, .., ¢g— 1}, ¢ > 1. In a finite volume A = Z“, the Hamiltonian
with free boundary conditions is

Hfree(aA)= - Z (5(0',\-, ay)_ 1) (21)
{x,v> € B(A)
where the sum goes over the set B(A) of all nearest neighbor pairs {x, y>
for which both x and y lie in 4. The Hamiltonian with ¢-boundary condi-
tions, ce S={0, 1, ..,g—1}, is

Hr(a-A)=HI'ree(0-A)—' Z (5(0-.\'3 a_v)_l (22)
xed, vedd
where 04 = {x ¢ A|dist(x, 4)=1} is the (outer) boundary of A. Using
the label b for “free” or ce S, one introduces the partition function with
boundary condition b as

Zy(A)=Y e~ PHson (23)

aa

where the sum runs over all configurations ¢ ,: 4 — S, xt—0o,, and f is the
inverse temperatures f=1/kgT.

As usual, an observable A4 with support supp A is a function
A: o, — C which does not depend on the spin variables o, for x ¢ supp 4.
A local observable is an observable with a support supp 4 not depending
on A. Expectation values of a local observable A are defined as

1
<A>b.A=m2A(UA)e“”””“’"’ (24)
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If A and A4 are two local observables, one also considers the truncated
expectation value defined by

CAAY b 4 =CAA) b 4= AV 0, 4 ADb 4 (25)

For observables of the form

A, =exp (i(g, p)) =exp <i > a_\.px>

xesupp Ap
where p is a function of finite support from Z¢ into $={0,2xn/q, ..,
2n(q—1)/q}, the expectation values {(A4,) .. 4 are monotone increasing
(ie, nondecreasing) in A, while the expectation values {A4,>, , are
monotone decreasing in A by Griffiths’ second inequality,''®’ as generalized
by Ginibre.'® As a consequence, for b=“free” or b=0, the thermo-
dynamic limit

CApys= lim (4,4 4 (26)

exists for all local observables of the form 4, =¢"*# and hence for all local

observables 4. In (2.6), the limit may be taken through any increasing

sequence of sets. Using the permutation symmetry of the Hamitonian (2.2),

one concludes that the limit (2.6) exists for all boundary conditions b

considered here (i€, free or any constant boundary conditions). Also by

Griffiths’ second inequality, !¢’ the limit (2.6) is translation invariant.
The order parameter of the Potts model is the magnetization

M(f) = {gd(0,,0) =10 (2.7)

1
q-—1
where x, is an arbitrary point in Z¢ (recall that the infinite-volume states
{-), are translation invariant). It is known that M(f) is increasing in
B,'¢ 1 decreasing in ¢,'" and that the infinite-volume states {-),, ceS,

are equal to {-)g. if and only if M(B)=0.""* Defining the transition
point

B.=inf{ B| M(B) >0} (28)
we remark that it is believed that M(}f,) is increasing in ¢, and that
g.=max{ge N|M(B,)=0} (2.9)

4 Actually, ref. 1 proved that a/l infinite-volume Gibbs states are equal to {+ ) tree if and only
if M(B)=0.
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is 4 for d=2 and 2 for d> 2. The fact that M(f,) >0, ie., the existence of
a first-order phase transition, has been rigorously established for all d>2
provided ¢ is sufficiently large (ref. 25; see also refs. 27 and 28).

2.2. The Random Cluster Representation: Review of Basic
Properties

It is often useful to reexpress the g-state Potts model as an integer
value of a two-parameter interacting percolation model, the so-called
random cluster model of Fortuin and Kasteleyn."'* In order to set our
notation and state the results we will use in the rest of this paper, we briefly
review the derivation and some basic properties of the FK representation.
The representation is defined in terms of configurations we Q2= {0, 1} B,
where B,={(x,y>|x,y€Z"} is the nearest-neighbor bond lattice. For
subsets B < B,, the configuration space is denoted by Q5= {0, 1} 2.

Let us start with the finite-volume partition funtion with free boundary
conditions. We write the Gibbs factor exp[ — fH..(0,4)] as

l—I eﬂ(‘s(oﬂn o) —1
(¥, > €B(A)

and expand the product with the help of the identity
efoee =1 =(1—p)+ pd(o,,0,), where p=1—e=? (2.10)

We identify each term of this expansion with a configuration w e 25 ,,; @
is chosen so that it is zero on those bonds for which the factor in the
product is 1 — p, and one on those bonds for which the factor is pd(o,, 7).
Geometrically, we think of the bonds b= {x, y> for which w(b)=1 as
occupied or ordered, and those for which w(b) =0 as vacant or disordered.
With a slight abuse of notation, we sometimes use the symbol w to denote
the set of occupied bonds in B(A4), and w° to denote the set of empty bonds
in B(A); see, e.g., (2.11) below.
Rewriting the Gibbs factor in expanded form, we obtain

Zfree(A):: Z Z (l —p)lwtlplwl n 5(0'.“ o-y) (211)

WEeQpa) o4 (v yyew

Evaluating the sum over ¢ 4, we pick up a factor g for each connected com-
ponent of the graph (A4, w) (regarding isolated points as separate clusters).
Denoting the number of clusters in this graph by #(w), we find

Zfree(A)= Z (1 _p)]w‘lplwl q#((u) (212)

w € 82p4)
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It is an easy exercise to generalize (2.12) to the expectations of local
observables 4 = A(o). One obtains

<A>I‘ree. 4= Z Gfree. A(a)) Efrec(A | (1)) (213)
we sy
where
1
- o] el L #(w) )
Giree, al®) me(A)(l p) pq (2.14)

is the weight of the configuration w, while E..(-|w) is an average over
spins, with the spins constrained to be constant on each connected cluster
of w and with values for different clusters being chosen uniformly from
{0,1,..,g—1}. We remark that for the purposes of interpreting expecta-
tions of this sort, it is often convenient to consider the joint distribution on
the spin and bond variables with weights given by the terms in (2.11), as
introduced implicitly in ref. 37 and explicitly in ref. 9. In terms of this
distribution, the expectation Eg.(-|w) is an average over the conditional
distribution of spins, given the bond variables.

For constant boundary conditions, one obtains a similar representa-
tion, with the following differences (as noted in ref. 1):

(a) The set B(A) is replaced by the set B*(A) of all nearest neighbor
pairs {x, y> for which at least one of the two points x and y lies
in A.

{b) The points of the boundary 04 are regarded as preconnected or
wired, in the sense that these points are taken to be lying in one
cluster. This of course modifies the value of #(w).

(¢) The expectation Ep.(A|w) in (2.14) is replaced by E (A4|w),
where the average is computed with the additional constraint
that spins in clusters connected to the boundary now only
assume the value o,=c.

We have
CAD>ea= ) Gy 4l®) E(A]|w) (2.15)
we gty
where
1
. = _ pYlefl plol ,#(w)
Gw:r.A(w) Zwir(A) (1 P) P q (216)

and Zwir = ZCESZL‘ :qZO
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We denote by pge. 4(-) and p,. 4(-) the finite-volume measures
defined by the weights (2.14) and (2.16), respectively.

Remark. The measures g, 4(-) and u,;. 4(-) are defined on the
probability spaces (Rp.1), %5 (1)) and (R2p+4y» Fa+(4)) TESpectively. (In
general, we use %5 to denote the g-algebra generated by cylinder events
A<= Qpg.) It is sometimes convenient to extend these to measures on the full
space (2, &) by declaring all bonds in B,\B(A) to be vacant for g 4( - ),
and all bonds in B,\B*(A) to be occupied for g, (- ).

An important property of the FK representation is that it obeys the
Harris—-FKG inequality. This inequality, first proved for percolation in
ref. 22 and proved for a large class of models in ref. 14, was established for
the ¢ > | random cluster representation in ref. 11 (see also ref. 1). We begin
with the standard:

Definition 2.1. Consider the natural partial order on bond con-
figurations we Q5z, B B,, namely w <’ if w(b)=1=w'(b)=1. A func-
tion f: 25 — R is said to be increasing if it is nondecreasing with respect to
this partial order, ie., f(w)<f(w') for all w<w'. An event is said to be
increasing if its indicator is an increasing function. Similarly, a function f
is decreasing if the function —f is increasing, and an event is decreasing if
its complement is increasing.

A measure u on (25, %) is said to be an FKG measure if it obeys the
so-called Harris—-FKG inequality

u(A; N Ay) 2 p(A,) p(A4,) (2.17)

for all pairs of increasing events 4,, 4, € %. It is said to be a strong FKG
measure if for each cylinder event Ce %, the conditional measure u( - |C)
is an FKG measure. Finally, a measure 4 on (2, %) is said to FKG
dominate a measure v on (Qp, %3), denoted by

v < U
FKG

if w(A4) <u(A) for all increasing events 4 € Fp.

Proposition 2.2.'"" Let g=1. Then the finite-volume free and
wired FK measures p¢.. 4 and g, 4 are strong FKG measures.

Consequences (see, e.g., ref. 1)

1. The finite-volume measures are monotonic in the volume:

Hiree, 4 < Hirce, ' lf ACA’ (218)
FKG
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and
Hic, 2 2 Howie, 4 if AcA (219)
FKG

from which it follows that the infinite-volume measures
Aufree( : ) = limd/'lfree./l( N ) (220)
A—Z
and
.uwir( ’ ) = limd#wir, A( ) ) (221)
A—Z

exist for all monotone local functions, and hence for all local functions.
Furthermore, these infinite-volume measures are translation invariant and
inherit the strong FKG property.

2. The wired measures FKG dominate the free measures, i.¢.,

.ufree,A s ,uwir,/l (222)
FKG
and
Hiree < Hwir (223)
FKG

Another useful property of these measures is that they have finite
energy, a notion introduced by Newman and Schulman.(3?

Definition 2.3. Let B<B,, |B| <o, and ¢, a configuration
on B. If we is a configuration on the full space, let ¢(w) be the con-
figuration which agrees with ¢ on B and with @ on B<

#(b), beB

s = {0 L

Finally, if 4 = Q is an event, let ¢(4) = {¢(w)|w € A}. The measure x on
is said to have finite energy if for every finite B< B, and for every ¢ € 25,

#(A4)>0=pu($(4))>0

It is easy to see that finite energy is equivalent to the statement: For
each bond b, the conditional probability of the event that b is occupied,
given the configuration on all the other bonds, is nontrivial:

0 < u(a(b)=1|w(b), b#£b) < 1
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For the free and wired measures, it was observed in ref. 1 that this prob-
ability can be explicitly calculated:

w(w(b) =1 |w(b), b #b)

if the endpoints of b are connected,

_ p regardless of w(b) (2.24)

S otherwise
p+q(l1—p)

where u=pug.. or py;. Thus for all g=1 and all p#0, 1, the random
cluster measures ug,. and u,,; have finite energy. Note that this is not true
in all random cluster measures: Boundary conditions can impose con-
straints which exclude certain configurations.

Given stationarity and finite energy, it follows immediately from a
general result of Burton and Keane!® that the infinite cluster is unique:

Proposition 2.4. Forany¢>1and any p € (0, 1), the free and wired
random cluster states have at most one infinite cluster with probability one.

Since the Burton and Keane theorem requires only stationarity, it
applies also to nonextremal states, and therefore allows the possibility of a
convex combination of states with zero and one infinite cluster. If, in addi-
tion, the measures are ergodic, then at any given value of p, there is either
zero or one infinite cluster with probability one. This is presumably the
case for both the free and wired measures, although we only prove it for
the free state (see Section 2.4). Of course, ergodicity does not exclude the
possibility that, for a fixed value of p, the wired state has an infinite cluster
and the free state does not—indeed, for ¢ large enough, this is exactly what
happens at the transition point.

2.3. Two Useful Inequalities

There are three main technical tools for factoring intersections of
events in standard Bernoulli percolation: the FKG inequality for monotone
events, independence for events which occur on nonrandom disjoint sets,
and the van den Berg—Kesten® inequality for events which occur on ran-
dom disjoint gets. As discussed in the last section, the free and wired
random cluster measures obey an FKG inequality. However, due to the
nonlocality of the weights (2.14) and (2.16), they satisfy neither an inde-
pendence condition nor a BK inequality. Indeed, it is clear from (2.24) that
the probability of even a simple bond occupation event can be enhanced by
the occurrence of some other event at an arbitrarily long distance from the

822/82/5-6-3
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bond in question. In this subsection, we provide alternatives to inde-
pendence and the BK inequality for many events of interest in a general
setting.

As a substitute for independence of events occurring on nonrandom
disjoint sets, we might try to use the FKG inequality as a bound, provided
that the desired events are monotone. However, many of the events we care
about—especially in the low-temperature phase—are not monotone. For
example, the probability of a connection via finite clusters is the inzersec-
tion of an increasing and a decreasing event. The presence of boundary
conditions, which very often complicates proofs in the random cluster
model, can be used to our advantage here. Certain boundary conditions
decouple a set from its exterior. Many events of interest carry with them
decoupling boundary conditions for the (random) sets on which they
occur. We make this notion precise by introducing the definition of a
decoupling event below. It turns out that, given this definition, it is possible
to prove a general inequality which is similar to the FKG inequality and
which replaces independence for events whose random boundaries occur
within disjoint nonrandom sets. Qur inequality holds for any FKG
measure and for events which are intersections of arbitrary events with
monotone decoupling events.

As explained above, the BK inequality is certainly not true in general
for the random cluster model—there are numerous examples in which the
occurrence of one event enhances the occurrence of another. However, this
enhancement cannot take place if the two events are decoupled from one
another, in a sense to be made precise in the definition below. Thus we
prove a second inequality, which replaces the BK inequality of Bernoulli
percolation, and which holds for the intersection of an arbitrary event, an
increasing event, and a decreasing decoupling event.

In Proposition 2.6 below, we actually present two versions of each of
our inequalities: one which is easy to formulate (but not that useful), and
a more involved one which is of the form needed for our applications. All
of these inequalities hold for general FKG measures. We also give a useful
corollary that concerns monotonicity in the volume and FKG domination
in the random cluster model. We begin with the definition of a decoupling
event.

Definition 2.5. Given a probability space (2, %, u) and events 4,,
A,, De &%, we say that D is a decoupling event for A, and 4,, if

#(Ay N A;|D) =p(A,|D) u(4,|D) (2.25)

For brevity, we will sometimes say D decouples 4, from A4,.
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While this definition makes sense in any probability space, it may be
useful to illustrate it with a typical example from the random cluster model.
Consider a set B< B, such that B,\B=B, U B,, B, n B, = . The event
that the bonds of B are vacant then decouples any event 4, € %5 ,  from
any event A, € %, 5. In this paper, such decoupling events typically occur
when B is the boundary of a finite occupied cluster. Returning to the
general context of Definition 2.5, we have:

Proposition 2.6. Let (2, #, u) be a probability space with £ par-
tially ordered and ¢ an FKG measure with respect to this order. Then the
following inequalities hold.

1. The First Inequality:

(i) Consider two arbitrary events 4,, 4, € %, and two increasing
(or two decreasing) events D,, D, € & such that D, decouples 4, from D,
while D, decouples A, from 4, " D,. Then E,=A4, nD,and E;=A4,n D,
obey the inequality

H(Ey N E3) 2 p(Ey) p(Es) (2.26)

(ii) More generally, let E;, i=1, 2, be disjoint unions of the form

E= 40D (227)

kekK;

where K; are countable index sets, 4, , € # are arbitrary events, D, , € #
are all increasing (or all decreasing) events, and D, , decouples A4, , from
D, .. while D, , decouples A,, from 4, ,nD,, for all keK, and
k'eK,. Then E, and E, obey the inequality (2.26).

2. The Second Inequality:

(i) Let A, € Z be an increasing event, 4, € # be arbitrary, and
De % be a decreasing event which decouples 4, from 4,. Then

Ay 0D A) Sp(A) (D 0 Ay) < p(Ay) p(Ay) (2.28)

(i) More generally let 4, € # be an increasing event, and let
A, e % and De ¥ be events for which D n 4, can be rewritten as a dis-
joint union of the form (2.27), with D, , decreasing events that decouple 4,
from A4, , for all ke K,. Then the bound (2.28) remains valid.

Proof. Rewriting the left hand side of (2.26) as

MD3) (A, "Dy N A5]D,)
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and using the fact that D, decouples 4, from 4, nD,, we obtain
A, nDynA; nDy)=pu(A, "D, N D,) u(A4,|D,)

Applying the same procedure to the term u(4, n D, nD,) and using the
decoupling event D, we get

A, "Dy A, nDy)=pu(Dy nD,) u(A,| D) u(A4,|D,)

which by the FKG inequality (2.17) implies (2.26). Part 1(ii) of the
proposition then follows from the countable additivity of the measure u
and the fact that the events E, and E, are disjoint unions of events for
which (2.26) is valid.

In order to prove 2(i), we observe that

WA, "D Ay)=pu(D) u(A,|D) u(A4,|D)

by the definition of conditional expectations and (2.25). Using the FKG
inequality (2.17) to bound u(A4,|D) by u(A,), we find that the bound (2.28)
now follows. Again, 2(ii) follows from 2(i) and the countable additivity of
the measure. ||

Remark. It is clear from the above proof that the inequality (2.26)
is reversed if one of the two decoupling events D, and D, is increasing and
the other is decreasing. Similarly, the first inequality in (2.28) is reversed if
A, and D are both decreasing or both increasing.

Corollary. et g1, AcZ% and b=wir or free. Consider the
random cluster measure yu, , and the corresponding probability space
(825,, Fa, Mo, 1), Where B,=B*(A) if b=wir and B, = B(A) if b =free. Let
Bc B, and let E be an event of the form (2.27), where the index set is the
set of all subsets of B, i.e.,

E= ) AsnDg

ScB

with Age %y, arbitrary events, and Dge %, decreasing events that
decouple A from all events in %, ,. If the events Dy are decoupling
events with respect to the measure yg.. 4, then

Hiree, #(E) 2 tiree, (E) ~ provided A'cA and BcB(A') (2.29)

If the events D are decoupling events with respect to the measure y.;. 4,
then

Uie, 4 CE) € toie, 4(E) provided A'cA and Bc<B*(A') (2.30)
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and
Hwir, sA(E) S fhgee, 4(E)  provided Bc B(A) (231)

Proof. Let A, be the event that all bonds in B(A)\B(A') are vacant.
Then 4, € g 4051y © Fpans is decoupled from A4 ¢ by the event Dg. Since
both 4, and Dg are decreasing events,

,ufree, A(EI Al) >,ufree, A(E)

by the remark following the proof of Proposition 2.6. Observing that
Hivee, 4{ E) = tiree. 4/(E | A)), this proves (2.29). Defining 4, as the event that
all bonds in B*(A)\B*(A') are occupied [all bonds in B(A)*\B(A) are
vacant], we prove the remaining two inequalities in the same way. ||

In order to illustrate the utility of Proposition 2.6, we conclude this
subsection with applications of each of the two inequalities. These applica-
tions will be needed in our subsequent analysis and may be of independent
interest. As usual, we denote by C(x)= C(x; w) the set of occupied bonds
connected to x in the configuration w, and define {x «<» y} as the event that
x is connected to y by a finite path of occupied bonds. We also define, for
each finite set 4 = Z“ and any two points x, y e 4, the event R (A) that
x and y are connected by a cluster C(x) < B(A).

Proposition 2.7. Let g=>1, A<=Z“ be finite or infinite, and let
U= uir 4 OF Upee 4. Then for all finite A,, A, = A with B*(A4,) N B(A,) =
B(A)YnB"(A,)=, and all x,yeAd,,z,wed,,

MR (A1) ORI (A5)) 2 u(RE (A4,)) w(RE,(45))

Proposition 2.8. Let ¢>1, A =Z“ be finite, and let u=pu,; 4 or
Uieee, 1 Let X, y,z, we 4, and let D be the event {x «» z} N {y «» w}. Then

p{x =y} DA {zow)) Splx o y) uz o w)

Clearly, Proposition 2.7 is an application of the first inequality in
Proposition 2.6—the connections in question occur on fixed disjoint sets,
B(A,} and B(A4,), and due to the finiteness of the clusters, each connection
carries its own decoupling event. Note that if B*(A4,)nB*(4,)=,
then in percolation, the probability of the intersection of the events in
Proposition 2.7 would factor exactly. Here our first inequality replaces this
independence. In fact, given that the decoupling events can overlap,
Proposition 2.7 gives a new result even in the case of percolation. Proposi-
tion 2.8 is an application of the second inequality in Proposition 2.6—the
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connections in question occur on random disjoint sets separated by the
decoupling event D. This obviously replaces the BK inequality. Note that,
in marked contrast to percolation, the inequality would fail to hold if we
removed the decoupling event.

Proof of Proposition 2.7. Introducing 4%, as the family of all sets
Bc B(A,) such that B connects x to y, and %, as the family of all

Bc B(4,) connecting z to w, we decompose RI" (4,) and R, (4,) as
RT(4)= | {Cx)=B} = |J {ws=1} 0 {wsz=0}
Be 4 Bed&

and
Rf‘““ A)= | {Cz)=B} = | {ws=1}n{wss=0}

Be % Be

Here wj is the configuration w restricted to the set B and 0*B is the
set of all bonds in B,\B which are connected to B. Observing that for
all Be®, and all Be®,, D, y={ws.5=0} decouples 4, y={wz=1}
from all events in %y D Fpr(y,, While D, g={wz5=0} decouples
A, s={wg=1} from all events in F5 > Fyz+ 4, one easily verifies that
R (A,) and RI" (A,) are events of the form considered in part 1(ii) of
Proposition 2.6.

Proof of Proposition 2.8. Defining 4;={x < y} and 4,={z & w},
we rewrite 4, as the disjoint union 45* U 4, with

A=A, ~n{x e 04}
and

A=A, n{x 4}
Notice that . (4'™) =0, since with free boundary conditions, x cannot
be connected to the outer boundary 84 = {x ¢ 4 | dist(x, A4) = 1}. Introduc-

ing the family %, of sets B < B(A) that connect x to y but do not connect
x to z or y to w, we then decompose Af“ NnD as

AT D= ) {wpg=1}{wsz=0}
Bed

Observing that for all Be 4,, the event {w;.5;=0} decouples 4, from the
event {wz=1}, we obtain

AT "D A,) Sp(AT A D) u(A,) Sp(AT) u(A4,)

where we have used the second inequality of Proposition 2.6 in the first
step. This completes the proof for the free measure.
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In order to complete the proof for the wired measure, we will show
AT D A Ay) Sp(ATY u(A4,)
To this end, we define
AT =4, n{z e 04)

Since the wiring would connect two points if they were both connected to
the boundary, we have

AMADNA,=A"ADAAF

with probability one with respect to the wired measure. Applying the same
strategy as before, we then obtain

HAP AD A Ay) = (AT A D A AT) S (AR p(AS) < p(AT) p(4,)
as claimed. ||

Remarks. 1. As can be seen from the above proof, the finite-
volume free measure actually obeys the stronger inequality

lul'ree./l({x(_‘)y} ﬂDﬁ {ZH w})glufree,A({xHy} ﬂD) ,ul"ree,A(ZHW)

2. Using uniqueness of the infinite cluster® (see also Proposition 2.4
above), it follows immediately that A "D A, =A™ ADN A" with
probability one with respect to the infinite-volume measures ug.. and u,;;,.
Hence Proposition 2.8 holds for these measures as well.

2.4. DLR Equations and States of the Random Cluster Model

In this subsection, we introduce the notion of (unconstrained) DLR
states for the random cluster model, prove that the free measure is such a
state, and use this to show that it is ergodic—a property we will need in
our subsequent analysis. It is usually straightforward to establish such
results by invoking the general theory of Gibbs states (see, e.g., refs. 34 and
15). However, the general theory requires that the finite-volume expecta-
tions used to construct the DLR states are quasilocal functions of the
boundary conditions, a property which fails to hold here due to the nonlo-
cality of the random cluster weights. Thus the DLR equation has to be
established explicitly.

We start by defining finite-volume measures with general uncon-
strained boundary conditions—conditions which permit any component to
be connected to any other component. The set of states generated by all
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such boundary conditions is quite natural in the random cluster model.
A larger class including constrained states will be discussed briefly at the
end of this subsection. Each measure is defined on an arbitrary finite set of
bonds B = B, with boundary

O0B={xeZ|3y, ze Z?with {x,y) € B, {x, z) € B}

We specify the boundary condition by introducing a wiring diagram W,
which is a disjoint partition of 8B into ny, =1, ..., |§B| components:

iy
W={Ww,.,w,} with 9B= ) W, WinW,=g if i#j
i=1
We denote by % (0B) the set of all such wiring diagrams, i.e., the set
of all disjoint partitions of dB. Each component W; of the wiring diagram
W is considered to be preconnected or wired, so that all bonds beB
connected to points of W, are regarded as being connected to each other.
The number of components # (w) is then computed as usual. The random
cluster weight

G, s(w) (1 —p)let plel g#( (2.32)

_ 1
" Zy(B)

defines the finite-volume measure u . 4( - ). Denoting by Wy, the partition
with ny, = |0B| components and by W, the partition with only a single
component, we see that

Hiree, 4l - )=/1W{m. Bl ) Hoie, 4l - )=ﬂWwi,. gl )

so that the free and (fully) wired measures are just special cases of u . g( - ).
Note that among the measures uy, g( - ) are some that cannot be obtained
as transforms of any finite-volume states in the spin system, namely those
in which W has more than ¢ components W, with |W;| = 2.

There is a natural partial order on the set #°(3B). If W, W' e % (0B),
we say that W’ is coarser than W, denoted by W' > W, if for each W’ e W'
there exist W, , W, .., W, € W such that W= 7. W,. Notice that W,
is the least coarse and W, is the most coarse of all wiring diagrams.
Moreover, if W’ > W then y - 5 dominates y , 5 in the sense of FKG (see
Definition 2.1 above).

Each configuration w € 2 induces a wiring diagram on each finite set
BcB,. The induced wiring diagram W{B, ®) is a partition into com-
ponents of 9B, each of which is connected using occupied bonds in w g.
Thus each w € 2 gives rise to a sequence of induced finite-volume measures
Mwis. ), p fOr any increasing sequence of sets B< B, Henceforth we will
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extend the induced finite-volume measure 5 ) 5 10 @ measure on the
full space (£2, #) by declaring all bonds in B° to have the configuration
specified by w. [Compare this to our extensions of of ug.. , and py; 4
discussed in the remark following Eq. (2.16).] Using the form (2.32) of
the weights Gy, 5 and our definition of induced wiring diagrams, it is
straightforward to check that the (extended) induced finite-volume
measures obey the consistency condition

Hwis, ), 8(A) = J L s, w). p(AD) Ly s, @), B(A4) (2.33)

for all local events 4 € #, any finite set B, and all B< B.

For each finite B, we may define the function n,: (F,Q2)— R by
7p(A|®w) = Uy 5, o), 5(A). Since the family y = {n,|B<=B,, |B] <0} is a set
of proper probability kernels obeying the consistency condition (2.33), y is
a specification in the sense of ref. 34.

A DLR equation®? js just an infinite-volume analog of a consistency
condition like (2.33). Thus we introduce the (unconstrained) DLR equa-
tion for an infinite-volume random cluster state u:

w(A) = [ 1(de) 115,00, 5(4) (234)

where 4 € # is any local observable and B < B, is any finite set. As usual,
the DLR equation (2.34)—if it holds—allows us to write the infinite-
volume expectation of 4 as an average over finite-volume expectations. It
is closed in the sense that the average is computed with respect to the given
measure u. Note that this is different from the equation for states given in
ref. 1, where a random cluster measure was obtained as a transform of a
measure obeying the DLR equation in the spin system. On the other hand,
a DLR equation was implicit in the discussion of states in ref. 20; there,
however, the question of existence of solutions to the equation was not
addressed.

Let us denote the set of states obeying (2.34) by ¥ =9(y), where as
above y denotes the specification. States y € 4 will be called DLR states or
Gibbs states. A priori it is not clear whether ¢ is nonempty, i.e., whether
there exists an)'/ 4 satsifying (2.34). One might try to construct such a u as
a subsequential limit of finite-volume measures u,, ;—which clearly exists
by compactness—but the question of whether such a limit obeys (2.34)
involves a delicate interchange of limits. The theory of Gibbs states®* 'S
provides general conditions under which (2.34) is satisfied, one of which is
quasilocality of the specification.
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A function f is quasilocal if it can be approximated in the supremum
norm by local functions, a property which is equivalent (ref. 15, Remark
2.21) to the statement

sup  |flw)—-f){—-0 as B-—B,

. 1n:wp=ng

A specification {nz} is quasilocal if the functions mz(4, -) are quasilocal
for all finite B<= B, and all local events 4 %.

Unfortunately, due to nonlocality of the weights G, 5, our specifica-
tion is not quasilocal. For example, the probability of the simple event
{w(b) =1}, conditioned on the bonds in B,\{b}, changes discontinuously
depending on whether or not the endpoints of b are connected by a path
(of any length) in B,\{b} [see eq. (2.24)]. The general theory of Gibbs
states therefore cannot be applied here. However, we can verify the DLR
equation (2.34) explicitly in the case of the free measure:

Proposition 2.9. Forall g>1 and 0 << o0, i €9

Proof. Let BB, be a finite set and A€ % a local event. We wish
to show

Hree A) = [ Hiee 0} 15,0, 5(4) (2.35)

By the finite-volume consistency condition (2.33) and convergence of the
finite-volume measures (2.20), it suffices to prove

lim J#free,A(dw);“W(B‘w).B(A)=J‘.ufree(dw)/"W(B,w)‘B(A) (2.36)
A—2Zy

Inserting the partition of unity 3y ¢ 281 w5 w)=w} =1 into (2.36) and
noting that z,, z(A4) is independent of A, we see that it is enough to prove

i e s({ WAB, @) = W) =t { W(B @)= W})  (237)

i.e., that the probability of a given wiring diagram converges.

Let Ry, (B¢) denote the event that all sites within the set W, are con-
nected to each other via bonds in B, let Sy (B} =\, wRw,(B°), and let
Ny, w,(B°) denote the event that none of the sites in W; is connected to
any of the sites in W, via bonds in B“. Then

{W(B, w)y=W}=Su(B)n () Ny, w;,(B) (2.38)
Wi, u{,e w
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By inclusion-exclusion, it is not hard to show that if B(A4)> B, then

iufree,A({ W(Ba CO) = W} ) = Z kW( W) iufree.A(SW(Bc)) (239)

W e W(aB):
W>w

where the sum is over ¥ coarser than W [see the definition a paragraph
below (2.32)], and k g{ W) € Z are computable coefficients with &, (W) =1.
Thus by (2.37)-(2.39), we only need to show that for all We % (9B)

Ali_’rgzd/"free. A(SW(BC)) =.ul'ree(SW(Bc)) (240)

Let We # (0B) and choose A such that B(A4)> B. Due to the free bound-
ary conditions on 04, the argument of the left-hand side of (2.40) can be
rewritten as

Hicee, a(S wAB)) = thiree, a(S (B(A)\B)) (2.41)

Approximating the wiring event Syz(B) by local events, we see that the
right hand side of (2.40) is actually a double limit:

lufrec(SW(Bc)) = A!i_r.nzl#free(SW(B(Al)\B))

= lim lim pge. A(Sp(B(4')\B)) (2.42)

A =Zy A2y

Thus by (2.40)-(2.42), we must show
lim lufrce,A(SlT’(B(A)\B))= !lm lim Hiree, A(SW(B(A,)\B)) (243)

A—Zy A= Zy A= Zy
In order to prove this, we note that for all A' = A4

/'tfrce, A(Sﬂ’(B(A')\B)) Slufrec:. A(SII/(B(A,)\B)) <,ufree, A(SW(B(A)\B))
(2.44)

where the first inequality follows from the monotonicity property (2.18)
and the second is just a consequence of Su(B(A')\B)<Sz{(B(A)\B) if
A" < A. Taking the limits A —»Z, and A’ —» Z,, we find that Eq. (2.44)
yields (2.43) and hence (2.35). |

Remarks. 1. The only property of the free measure that was used
to reduce the proposition to Eq. (2.40) was convergence of the finite-
volume measures. Thus the wired analog of (2.40)—i.e. convergence of the
probability of the wiring events Sy{B¢) with respect to the finite-volume
wired measures—is sufficient to prove u,; €%. Unfortunately, however,
lwir does not have nice monotonicity properties like those in Eq (2.44).
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2. Equation (2.43) of the proof is our first example of the problem of
interchange of limits which arises again in Proposition 3.4 and in many
theorems in Section 4. Whenever we deal with the infinite-volume limit of
an event which is not confined to a finite volume, we encounter a double
limit—one for the construction of the infinite-volume measure and the
other for the approximation of the given event by local events. Hence the
problem of interchange of limits. This problem does not arise in percola-
tion because the measure is defined directly in the infinite-volume limit.
Here, when we can deal with interchange, it is usually accomplished via
either simple FKG monotonicity [ Egs. (2.18) and (2.19)] or our mono-
tonicity involving decoupling events {(corollary to Proposition 2.6).

It is now straightforward to show that u.. is ergodic. We have:

Theorem 2.10. Let H be any nontrivial subgroup of the translation
group and let 4, = % be the set of all H-invariant DLR states. Then for all
q=1, Uge. is extremal in 4, and hence is H-ergodic.

Proof. As noted earlier, W, is the least coarse of all wiring
diagrams, so that

Hipe 8 S Hw, B for all We# (0B) (2.45)
FKG

and thus by convergence of the measure (2.20)

Hiree S M forall ue% (2.46)
FKG

Given that ug.. €% (Proposition 2.9), it follows immediately from (2.46)
that pg.. is extremal in ¢ and hence also in ¥, (since pg.. is of course
H-invariant). Ergodicity then follows from the fact that all extremal
measures in ¥, are H-ergodic (ref. 34, Theorem 4.1). |}

Remarks. 1. FKG Ordering of States: Using the fact that the
wired state is the coarsest of all states, we have analogs of (2.45) and (2.46)
for the wired measure, and thus

Hiee S 0 < Uy forall ue% (2.47)
FKG FKG

Note of course that this does not imply u,,; € 9.

2. The Size of 9: By Proposition 2.9, g €%, so that |4 =1 for all
g>1 and all inverse temperatures . Let P¥"(f) denote the percolation
probability in the wired measure, which of course coincides with the
magnetization for integer ¢g. According to a result of ref. 1 (Theorem A.2),
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whenever P¥*(B)=0 (ie., < B, for systems with second-order transitions
and f< g, for those with first-order transitions) firee=/pwi, SO that by
(247) and Proposition 2.9, [4|=1. It is expected that |4|=1 also for
B> p,, but there are only incomplete results for d=2: The two-dimensional
dual of the result of ref. 1 says P¥"($*) =0 implies |¢| =1, i.e. there is one
state for f> ¥ which presumably coincides with f, (see also ref. 20).
However, one expects more states at the transition point in systems with
first-order transitions. For ¢ large enough and d=2, convergent expan-
sions'* 2" can be used to show that there are g+ 1 distinct translation-
invariant spin states (which transform into two distinct translation-
invariant random cluster states—the free and the wired). There are
presumably no non-translation-invariant states. Thus we expect |¥4| =2 for
B=p, and g large enough in d=2. In three dimensions, convergent expan-
sions*® can be used to show that for ¢ large enough, in addition to the
translation-invariant states discussed above, there are infinitely many non-
translation-invariant “Dobrushin-type” states corresponding here to states
constructed from wiring diagrams which coincide with W, above a certain
hyperplane and with W below that plane. We expect that these expan-
sions can also be used to show that these non-translation-invariant states
satisfy our DLR equation (2.34), so that at f=p,, |4| =0 for g large
enough in d >3, in contrast to the conjecture of ref. 20.

3. States with Constraints: In the remark above, we mentioned
“Dobrushin-type” states which we expect to be in ¥; these states were con-
structed from a combination of wired and free boundary conditions. There
are, however, many Dobrushin-type states in the spin system whose trans-
forms are not in ¥—namely, mixed states in which various components of
the boundary have different values of the spin. In the random cluster
model, these correspond to states with constraints—certain components
cannot be connected to other components. Therefore, in order to formulate
DLR equations for these states, one has to supplement our wiring
diagrams with some notion of constraints. While this is possible for
individual finite-volume states, it is not clear how constraints should be
induced by a given configuration w € Q, nor whether the resulting measures
would obey even finite-volume consistency conditions.

3. THE COVARIANCE MATRIX

3.1. The Random Cluster Representation of the Covariance
Matrix

In this section, we rewrite the covariance matrices with free and
constant boundary conditions,
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G?JQL(X—J’)=<‘15(U,\-,’"); qa(ay’ 1) free (3.1)
and
GT"(x~y)=<qd(a,, m); go(c,, n)) G

in terms of the random cluster representation of Fortuin and Kasteleyn.!*

We do this by first deriving finite-volume expressions and then taking
infinite-volume limits.

3.1.1. The Covariance Matrix in Finite Volume. Before deriving
our representation for the covariance matrix, we recall the corresponding
result for the (finite-volume) magnetization

1
M(p, 4) = (a8, 0) = D>o., (33)

Using the symbol X < Y for the event that the set X is connected to the
set Y by a finite path of occupied bonds, we see that the expression (2.15)
almost immediately gives

M.\'(ﬁaA)=/uwir,A(xHaA) (34)

For future reference, we note that this can be easily generalized to the
expectation of e?* with p e S\{0} = {2n/q, ..., 2n(q — 1)/q}. We obtain

<€ipﬂ">o‘A=ﬂwir,A(xHaA) if pES\{O} (35)

We begin by considering the finite-volume two-point function with free
boundary conditions,

G'r';;; A(xa J’) = <‘]5(U,\-, m)y qa(ay, n)>free‘ A (36)

Using the fact that {(gd(o.,m)) e 4=1 for all m and all xe A, we first

rewrite Gim. ,(x,y) as an untruncated expectation value

Gliee A(X, ¥) =<(gd(o, m)—1)(g(a,, 1) = 1)) ree. 4 (3.7
Now observe that
Egee((qd(0, m)—1)(¢gd(a,, n) —1)|w) =0
if x and y are not connected in the configuration w, while

Efree((qé(a,\" m) - 1)(‘]5(0_)” 71) - l)lw) = qa(m’ 11) - 1
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if x and y are connected. Thus, defining the connectivity in the FK
representation

Tfree. A(x’ y) = Hiree. A(x A J’) (38)

we obtain the following:

Lemma 3.1. The finite-volume covariance matrix with free bound-
ary conditions has the representation

GFr'ge, A(x’ )’) = (qa(m’ n) - 1 ) rl‘ree, A(xa J’) (39)

Remark. The result (2.9) in ref. 1 for the usual two-point function,

1
qu <q5(a.\" O-y) —1 >free. 1= Tfree, A(Xa J’)

is proportional to the trace of our expression (3.9).

Next, we rewrite the finite-volume covariance matrix with constant
boundary conditions,

Gi(x—y)=<qd(o,, m); gd(a,, n)) . 4 (3.10)

c, A

To this end, we define the finite-cluster connectivity
o, (% P = e al{x o ¥} 0 {x > 04}) (3.11)

and the covariance of the events that x and y are connected to the
boundary 04

Cwir‘A(xv y) =#wir.A({xH.aA} N {y HaA)}
"#wir‘A(xHaA).uwir.A(y‘_’aA) (312)

We have:

Lemma 3.2. The finite-volume covarlance matrix with constant
boundary conditions has the representation

G’c’:n/!(xi y) = (qé(m’ n) - 1) T?:ilr./l(x’ y)
+(q5(m’ c)_l)(qd(na C)-l) Cwir,A(x) y) (313)
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Proof. By the symmetry of the model, it is enough to establish
the lemma for ¢=0. In a first step, we prove a similar relation for
(ePor; e~y , namely

(ePor ey, ,

=(1=3(p, )1 =8(p’, 0))(Cyir, alx, ) +0(p, P') Tofk_4(x, ¥))
(3.14)

Assume w.lo.g. that p5£0 and p’ 50, since otherwise {e#™; e~ 7y, =0.
Then recalling the definition of truncated expectation values and observing
that by (3.5)

<ei’wx>o, A <e_ip’a">o. 4= Huie, (X 0A) fyie 4(y > 0A4)

the proof of (3.14) reduces to showing that

(P Py =i s{x 04} N {y = d4})+6(p, p') T (X, ¥)
(3.15)

We consider the cases p=p' and p+#p' separately: If p#p’, the
expectation Eq(exp(ipo,)exp(—ip'c,)|w) is zero unless both x and y are
connected to the boundary, in which case Eq(exp(ipo )Jexp(—ipo,)|w)=1.
As a consequence,

(e Py y=phye A{x 04} A {y04}) i p#p (3.16)

If p=p’, we consider two cases: either x <> 04 in the configuration w or
X« 04. In the first case, Ey(exp(ipo,)exp(—ip'c,)|w)=1 if y«> 04 as
well, and Eq(exp(ipo,) exp(—ip'c,)|w) =0 if y «» 04, yielding a contribu-
tion of p 4(x— 04 and y«— 84). In the second case, Ey(exp(ips,)
exp(—ip'c,)|w)=1 if xey and Ey(exp(ips,)exp(—ip'c,)|w)=0 if
X «» y, yielding t™  (x, y). Thus

wir,

G AO TS = puir. s({x = 04} 0 {y - 04})

fin

+tgralxy) if p=p (3.17)

Equations (3.16) and (3.17) establish (3.15) and hence (3.14).
Given (3.14), the proof of the lemma is an easy exercise: observing
that the delta functions gd(a,, m) and gd(o,, n) can be rewritten as

Z eiP(‘T.r—"') and Z e—ip'(ay-n)

pes pes
respectively, we multiply both sides of (3.14) by exp[i(p'n —pm)] and sum
over p and p’ to obtain (3.13) for ¢=0. |



Covariance Matrix of the Potts Model 1265

3.1.2. The Covariance Matrix in Infinite Volume. In this
subsection, we extend our representations of the covariance matrix with
free and wired boundary conditions to the infinite volume. To this end, we
again denote by C(x)= C(x; w) the set of occupied bonds connected to x
in the conﬁguratlon o, and define the (translatlon invariant) analogs of
expression (3.8) for the connectivity,

I.f'rc:t‘:(x—y) =/"I‘ree(x‘_’y) (318)

expression (3.11) for the finite-cluster connectivity,

To(x =) =t ie(x  y and | C(x)| < o0) (3.19)

Wll'

and expression (3.12) for the covariance,

Cuirlx —y) = Cov,,, (|C(x)| = o0, |C(y)| = 0) (3.20)
where in general Cov,(4, B)=u(A n B)—u(A)u(B) is the covariance of
events A and B with respect to a measure u. We call the function
C.i(x—y) defined in (3.20) the infinite-cluster covariance. Our infinite-

volume representation is contained in:

Theorem 3.3. The covariance matrices G
can be expressed as

x—y) and G?"(x—y)

free

Ghree(x —y)=(go(m, n)—1) t(x, y) (3.21)
and

G7"(x —y)=(qé(m, n)—1) T3 (x — y) + (gd(m, c) — 1)
X (qé(na C) - 1) Cwir(x —)’) (322)

Proof. Given the corresponding finite-volume statements in Lemmas
3.1 and 3.2, the theorem is an immediate consequence of Proposition 3.4
below.

Remark. * For the diagonal elements of the covariance matrix, an
analog of Eq. (3.22) was already stated in Proposition 1.1 of ref. 23 with a
proof referring to techniques developed in ref. 1. However, we do not see
how these techniques, originally developed to treat the increasing events
defining the magnetization, apply to two-point functions, in particular how
they can be used to establish the infinite-volume limit for zfi"

wir*

822/82/5-6-4
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Proposition 3.4. Let g1 be real, let tq, 4(x,¥), o ,(x,y), and
C.ir. 4(x, y) be the quantities defined in Eqgs. (3.8), (3.11), and (3.12), and
let Tpe(x—y), T™(x—y), and C,;(x—y) be the corresponding infinite-
volume quantities, defined in Eqs. (3.18)-(3.20). Then the infinite-volume
limits of T 4(x, ¥), T2 (X, ¥), and Cy;. 4(x, y) exist, and

wir, A4

Tfree(x -}’) = llmd Tree. A(xs y) (323)
A2

i (x—yp)= lim ™ (x,y) (3.24)
A—=zd ‘

and

Cwir('x —J’) = llm‘l Cwir, A(xv J’) (325)

A=Z

Remark. For local observables, the existence of the thermodynamic
limit follows immediately from the FKG monotonicity properties (2.18)
and (2.19)—see Eqs. (2.20) and (2.21). This, however, does not imply the
relations (3.23)—(3.25), since the events in question are nonlocal; the rela-
tions can only be established after an interchange of limits. In the ordered
phase, this interchange is not merely technical—it is related to the question
of how the infinite cluster emerges from large clusters in a finite volume.
Thus it depends sensitively on boundary conditions. For example, for a free
boundary condition analog of the finite-cluster connectivity (3.19), an
infinite-volume statement like (3.24) is actually false.

Proof. Introducing the event R (A) that x and y are connected in
B(A), we obtain for the right hand side of (3.23)

limd Hiree, Alx “"y) = limllﬂl‘rec.A(Ra\'»)'(A))
A—Z A-Z

while the left hand side is

#free(xHy)= limd,ufree(Rx,y(A,))= hm hm Aufrce,A(R.\',y(A’))
A4'=2Z A=zd A2

We therefore have to show that

llm hmd ,ufree. A(Rx.y(/l,)) = hmd ,ufree. A(R.\‘.y(A)) (326)
A= Z A—Z

A —z4

In order to prove (3.26), we combine the monotonicity property (2.18)
with the fact that R, (A")c R, (A4)if A'c A to get

Hiree, A'(Rx, y(AI)) Sll't('rc:e, A(Rx, v(A,)) </“l‘rer:. A(Rx. v(A)) lf A4
(3.27)
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Taking the limits 4 - Z¢ and A' — Z9 we find that the inequality (3.27)
implies Eq. (3.26).

In order to prove (3.24), we consider the event Rrm (4) that x and y
are connected by a cluster C(x) < B(A), as introduced in Proposition 2.7.
Recalling that 04 = {x ¢ A4 | dist(x, 4) =1}, we see that R%" () is the inter-
section of the event R, ,(4) with the event that x is not connected to 4.
We claim that

#wir.A’(er (A )) </uw1r A(Rﬁn (A’)) S/'tWIrA(R(my(A)) if A'c4
(3.28)

As before, the second inequality follows from the fact that R} (A4') < R(‘“),(A)
if A’ = A, which implies that u; R™ (A')) is monotone increasing in A'.
However, the monotonicity of u,;. ,,(Rr"‘ {(A')) in A is less obvious because
R“"y(A') is neither an increasing nor a decreasing event. It is, however, an
event of the form (2.27) considered in Proposition 2.6 and its corollary.

Namely,

RY (A=) {Cx)=B} =) {ws=1} N {wsp=0} (3.29)
B

B

where the union goes over all connected sets B< B(A’') that join x to y,
wp is the configuration w restricted to the set B, and 8*B is the set of all
bonds in B,\B which are connected to B, as in the proof of Proposition 2.7.
Thus by the corollary to Proposition 2.6, ;. A(R““ (A')) is an increasing
function of A’ = A4, which is actually stronger than the first inequality of
(3.28). This completes the proof of (3.24).

In order to prove (3.25), we remark that it has been already shown in
ref. 1 (Theorem 2.3c) that

#wir('c(x)l =00)= hmd ﬂwir‘A(XHaA)
A—=Z

The proof of (3.25) therefore reduces to showing

i IC()] = 00 and | ()] = 00)) = im_ptyse u(x >4 and y o 04)
A-Z
(3.30)

Proceeding as before, we now introduce Rf._"), as the event that both x and
y are connected to dA. With this notation, Eq. (3.30) can be rewritten as

hm hm luwnr A(R\ v)_ hm luwxr A(Ra/‘ ) (331)

A2 42
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Using (2.19) instead of (2.18), and observing that R%", > R if A’ = A, we
obtain

iuwir,A (RaA ) >/‘lw1r A(R ) Z.uwir. A(Rf/‘y lf AI = A (332)

As before, the proof is completed by taking the limits 4 — Z“ and
A -7 |

3.2. The Covariance Matrix and Its Eigenvalues

Here we analyze the structure of the covariance matrix
G}"(x —y)=<{qd(o,, m); g6(c,, n)>, (3.33)

with free and constant boundary conditions, summarizing our results in
Theorem 3.5 at the end of the section. Before discussing particular bound-
ary conditions, we note that in general

Z Gmn x y) _Z Gmn(x y) =0 (334)

m

which follows from the fact that any truncated expectation {4; B},
vanishes if either 4 or B is constant, and from the obvious relation
SmesOlo,,m)=1. In particular, this implies that, independent of
boundary conditions, G} always has a trivial eigenvalue 0, corresponding
to an eigenvector 7= (1, .., 1)eR%

Now consider the matrix with free boundary conditions

Glhee(x —y) =< qd(a, m); g6(0,, 1)) free (3.35)

Due to the permutation symmetry of the Hamilton function (2.1) and the
symmetry of the boundary conditions, all diagonal elements are equal, as
are all off-diagonal elements. Combining this with the observation (3.34),
we conclude that

G (x—y) = <a(m, m— (1= 3mm) =L : )G?:zeh —)) (336)

1

Given (3.36), the matrix G{(x—y) is easily diagonalized. We find one
trivial eigenvalue 0, corresponding to an eigenvector 7, =(1, ..., 1), and one

(g — 1)-fold degenerate eigenvalue

Gl =) =25 Gx =)= 5 (000 0) = Ve (337)
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corresponding to the (g — 1)-dimensional eigenspace orthogonal to 7,. In
the second equality in (3.37), we have reexpressed Go.(x —y) as the usual
two-point function.

Remark. The above results imply that, in the free boundary condi-
tion case, the covariance matrix of the g-state Potts model does not contain
more information than the standard two-point function. As we will see
below [and as should be clear from the fact that G""(x — y) always has one
trivial eigenvalue], the same is true of the covariance matrix of the Ising
model (g =2) with constant boundary conditions. This may explain why
the covariance matrix has not been more widely studied previously.
However, as we shall see below and in subsequent sections, the ¢ > 3-state
matrix with constant boundary conditions does have additional content,
and this content has a clear stochastic geometric interpretation.

Next we analyze the covariance matrix with constant boundary
conditions,

G"(x—y)={gd(a,, m); gd(a,, n)). (3.38)
Starting with the special case ¢ =2, we use {3.34) to conclude that
GPx—y)=G'(x—y)= -G (x—y)= =G x~y)

Combined with the fact that GJ%(x —y) = G;'(x—y) by the symmetry of
the model, we obtain

G™(x—y)=(6(m,n)—(1—6(n,m)) GP(x—y) for g=2 (3.39)

Observing that the matrix structure of (3.39) is identical to that of (3.36)
with ¢ =2, we see that we again obtain a trivial eigenvalue of 0 and an
eigenvalue

G(x—y)=GP(x=y)={s5:;5,> for g=2 (3.40)

Here we have rewritten G3(x—y) in terms of standard Ising spins
5, =20(a,, 0) 1.

For g #2, the matrix structure of G7"(x — y) is less trivial. Using rela-
tion (3.34) and the fact that constant boundary conditions c € S leave the
symmetry of permutations among elements of S\{c} unbroken, it is easy
to show that there are only two independent matrix elements. Taking these
to be G(x —y) and G}'(x—y), we obtain
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G(x—y)=GP(x—y) if ceS
G"(x—y)=G'(x—y) if n#c

1
G (x—y)=G"(x—y)= -1 GPx—y) if n#c (341)

1
G'r""(x—y)= Ggo(x_y)—ﬁ G(')l(x—}’)

1
(g—1)g—2)
if n#m, nm#c

In order to diagonalize G2"(x—y), we begin by observing that the
expectation ¢ -, is invariant under the group S,_, of permutations of
S\{c}. Diagonalizing G" on the Hilbert space corresponding to the trivial
representation of S,_,, we identify two eigenvectors: ,=(1, ..., 1), corre-
sponding to the simple eigenvalue zero, and #,, with components
(vy),,=qd(m, c}— 1, corresponding to the nontrivial simple eigenvalue

Gialx—y) =5 6P =1 =L Cado., 00,4000, 0030 (342)
On the remaining (¢ — 2)-dimensional subspace orthogonal to 7, and 7,,
we finally obtain the (g — 2)-fold degenerate eigenvalue

2 _q9—1 N 1 00,
Guilx y)—q_zGo(«\ ¥) (q—l)(q—Z)Go(x y)
=Gy (x—y)—G§(x—y) (3.43)

It is interesting to note that, as in (3.37), it is possible to express the eigen-
value GZ(x—y) in terms of an untruncated expectation. Indeed, we may

simply rewrite the second line in (3.43) as

GAx—y)=13{(gd(0,, 1) —qb(0,, 2)); (¢6(v,, 1) —gd(a,, 2)) >
=31{gdlo,, 1) —qd(o,, 2)){¢gd{5,, 1) —qd(6,,2)}>, (344)

We both summarize the results of this section and establish their
stochastic geometric significance in the following:

Theorem 3.5. Consider the g-state Potts model with ¢>2. Then
the free-boundary-condition covariance matrix G{(x —y) has the simple
eigenvalue zero corresponding to the eigenvector 7o=(1,.., 1), and a

(g —1)-fold degenerate eigenvalue

Greel ¥ =)= L5 (48(0.,9,) ~ 1 (3.45)
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corresponding to the subspace orthogonal to #,. For ¢ >3 and all ce S, the
constant-boundary-condition covariance matrix G7"'(x — y} has the simple
eigenvalue zero corresponding to the eigenvector 7, = (1, .., 1), a nontrivial
simple eigenvalue

GUax =) =15 (4d(0, 0 48(6,, 0> (3.46)

corresponding to the eigenvector 7;, with components (v,),, = gd(m, ¢) — 1,
where 7, and 7, belong to the trivial representation of the unbroken sub-

group S,_,, and a (g —2)-fold degenerate eigenvalue
Ga(x—y)=3{(gd(o,, 1) —gd(a,, 2))(gé(a,, 1)~ qd(d,,2))>e  (347)
corresponding to the subspace orthogonal to 7, and v,. For g=2, the
matrix G?"'(x —y) has only the trivial eigenvalue zero and the eigenvalue
Gln(x—y).
Moreover, the eigenvalues Gp(x—y), Gi)(x—y), and GZ(x—y)

can be expressed in the random cluster representation as

Gfree(x ‘)’) = qu’ree(x _y) (348)
Garx—y)=gra(x—y)+q(g—1) Cyilx—y) (3.49)

and
Gox—y)=qrim(x—y) (3.50)

Proof. 1t only remains to establish the random cluster representa-
tions (3.48)—(3.50) of the eigenvalues. But these follow immediately from
expressions (3.37), (3.42), and (3.43) for the eigenvalues in terms of the
matrix elements, and expressions (3.21) and (3.22) relating the matrix
elements to the random cluster connectivities and cluster covariance. |

4. THE CORRELATION LENGTHS

4.1. Existence of the Lengths &, £}, and &2}

In this subsection, we establish the existence of the limits, (1.7)-(1.9),

using standard reflection positivity arguments. Namely, introducing the
unit lattice vector é, =(1, 0, .., 0) e Z¢, we prove the following;

Theorem 4.1. Let ¢g>2 be an integer, and let G(z) denote
Goeel(28)), GL(28,), or (for g =3) G2)(1é,); see Theorem 3.5. Then G(¢) is

wir wir
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a nonnegative, monotone decreasing, and log convex function of ¢, so that
(G(2)/G(0))"" is monotone increasing in ¢, the limit

1 . log G(1)
=~ im = )
exists, and the function G(¢) obeys the a priori bound
G(1)<G(0)e™"e (4.2)

Furthermore, denoting the correlation lengths defined in (4.1) by &g, &L,
and £3), we have

wir?

S =Ca (4.3)
Proof. We start with the observation that each G(f) can be written
as a truncated (infinite-volume) expectation of the form

G(ty={A;T'4>, (4.4)

where b denotes either free or constant boundary conditions, 4 = A(a,) is
an observable which depends on the spin variable o, of a single point
xeZ% and T’A is the translation of the observable 4 by té,. Equation
(4.4) follows from (3.37) and (3.35) for Gy, from (3.42) for G|}, and from
(3.44) for G@).

Due to the reflection positivity of the model (see Appendix A for a
review of the basic ideas), T can be represented as a non-negative contrac-

tion (0 <7< 1) on a Hilbert space #, and

G(1)=(y, TY)

for a suitable vector y € #. Obviously, this implies that G(¢) is a monotone
decreasing, nonnegative function of ¢. By the Cauchy-Schwarz inequality,

G(3(t, + 1)) = (T, T?Y) < [G(1,) G(t,)]'

so that G(¢) is log convex. Noting 0<G(0) <o, this implies that
(G(1)/G(0))1/t is monotone increasing in ¢, which in turn immediately
implies existence of the limit and the a priori bound. Finally, (4.3) follows
immediately from the representation in Theorem 3.5 and existence of the
limits. |

Remark. For Gy, and G2, the existence of the corresponding
correlation lengths can also be established by subadditivity arguments (see

Section 4.2 below). While these arguments are more involved than the
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reflection positivity proof presented above, they have the advantage that
they give existence of limits analogous to (1.7) and (1.9) for noninteger
values of ¢, defined directly in terms of 7, and ™ [cf. Eqgs. (3.48) and
(3.50)]. Moreover, a slight variation of these arguments can be used to
establish left continuity of the inverse correlation length 1/&...(f)
(Theorem 4.2) and upper semicontinuity of 1/¢{2) (Theorem 4.3). On the
other hand, subadditivity does not establish log convexity of G(¢) and
hence monotonicity of the full sequence (G(2)/G(0))"", as we have from the
above theorem for integer g. Furthermore, we are not aware of any proof

of the existence of £{1) which does not involve reflection positivity.

wir

4.2. Equivalent Characterizations of &, £{1, and £!2)

WII'

We already have stochastic geometric representations for the correla-
tion lengths &g, and £@) as the decay rates of of 7y, and 72 —see
Theorem 3.5. In this subsection, we provide a stochastic geometric
representation for £{)) (Theorem 4.4) and give alternative representations

wir

for & and &2 (Theorem 4.3, Lemmas 4.6-4.8). On the one hand, these
alternative representations allow us to prove several results on the behavior
of &ree and ¢, in particular left continuity of 1/&n..(8) (Theorem 4.2),
upper semicontinuity of 1/¢2) (Theorem 4.3), and the two-dimensional

wir

dichotomy (1.11) and (1.12) involving ¢y and &2 discussed in the
introduction. On the other hand, the alternative representations may be of
interest for numerical determinations—in particular the representation of
¢@ in terms of the probability 32™(#) that the diameter of the cluster C(0)

wir wir

is n (Theorem 4.3). The representation of £{) as the decay rate of the
covariance C,;, provided the magnetization M(f)>0, may be of interest
both to mathematicians and numerical physicists. It is worth noting that
many of the results of this subjection are generalizations of corresponding
percolation results of ref. 7 to ¢ > 1, but the proofs are quite different due
to the lack of independence, the lack of a BK inequality, and the presence
of boundary conditions.

Some of the results in this section (and most of the proofs) are of a
rather technical nature. In particular, we introduce many connectivity func-
tions and ultimately show that they have only a few independent decay
rates. However, in the process, the notation and the arguments become
rather cumberseme. In order to simplify matters, we first introduce only a
few “physical” connectivity functions and summarize the results of indepen-
dent interest on &g, ¢ and &1 in Theorems 4.2-4.4, respectively. The
remainder of the subsection is devoted both to the proof of these results and
to the statement and proof of several more technical results which we will

need for our proof of the two-dimensional dichotomy in Section 5.
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We start with a few definitions. For b = wir or free, we introduce the
on-axis connectivity function

T,(Lé,)=p,(0 Lé)) (4.5)
the on-axis finite-cluster connectivity
Ty (Lé,) =p({0 = Lé,} n {|C(0)] < 0}) (4.6)
the diameter function
tiam( 1) = u,(diam C(0) = L) (4.7)

where diam C(0) denotes the diameter of the cluster C(0) in the £ norm,
1. ., the maximum diameter in any of the d coordinate directions, and the
covariance

Co(x =) =py({IC(x)| = 0} N {|C(y)| = c0}) = PL(B)*  (48)

where
P2 () =ps(1C(0)| = o0) (4.9)

We denote the corresponding correlation lengths—whenever they exist—by
éb’ éﬁn dmm and éb

Theorem 4.2. Let 0<f < oo and ¢ = 1. Then the correlation lenths
Eoir and &g exist, &pe. < Eir, and 1/E... is a left continuous function of f.

Theorem 4.3. Let 0<f< oo and ¢g= 1. Then for b= wir or free,

the correlation lengths &)™ and ™ exist and are equal: &f" =£§*™  Also

fn <&M . and 1/£™ is an upper semicontinuous function of . If ¢ >3 is
an integer, then in addition

Sa=Eh = (4.10)

Remark. Combined with the obvious inequality ¢f° <¢&..., the
inequalities from Theorem 4.2 and Theorem 4.3 give

fin fin
wir < free =% éfree < ‘fwxr

provided 0 < f< o0 and g = 1.
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Theorem 4.4. Let 0<f <o and ¢g=>2 be an integer. Then the

correlation length &S exists and
Car=Cl if M(B)>0 (4.11)
while
{wiw=0 and ) =¢0=Ce. i M(B)=0 (4.12)

In order to prove Theorem 4.4, we use a proposition which may be of
independent interest and is stated next.

Proposition 4.5. Let 0<f< o0 and g> 1. Then

Cylx~y) 2 T™(x —y) PL(B) (4.13)

Proof of Proposition 4.5. The proof of this proposition is an easy
generalization of the proof of the corresponding statement in ref. 7. For a
set B B,, let P(B) be the set of points x such that x €db for some bond
be B. Denoting by 4, the family of finite connected subsets B< B, for
which x e P(B), we have

Colx =) =p,(|C(x)| < 0) (| C(y)] = o)
—u({1C(x)] < 0)} N {|C(y)| = 0})

= Y (u(C(x)=B) uylIC(»)| = 0)

Be B,

—u({C(x)=B} n{|C(y)| = 0}))
= 3 (us(C(x) = B)uu(|C(y)| = 0)

Be B,

= |C(y)] =0 | C(x) = B))

> Y (uy(Cx) = B) s |C(p)| = 0)
_vB:lf;S:)

—up(|C(y)| = 00| C(x) = B))

= Y uC(x)=B) u(|C(y)| = o) =1i"(x—y) P5(B)
Be %y
veP(B)

where in the fourth step we have used that for all Be &,

{C(x)=B} ={wz=1} n{wsz=0} =4, D
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is an event of the form considered in the second inequality [ part 2(i)] of
Proposition 2.6, and hence

H(1C(p) = 0) —p(|C(y)| = 0| C(x) = B) >0

Here, as in the proof of Proposition 2.7, wy is the configuration w restric-
ted to B, and the boundary 0*B of B is the set of all bonds in B,\B which
are connected to B. ||

Proof of Theorem 4.4. Since M(f)=P¥" (), we have that for
M(B)>0

(g—1) Coilx —p) + 80 (x —y)

o

1
= TS YTN —1 wirl-* f\:lv[llr
<<1+(q—l)M(ﬂ)>((q ) Coulx =)+ 285x =)

by Proposition 4.5 and the fact that ™ >0. Combined with Theorem 4.1.,

wir =

which guarantees the existence of the inverse correlation length

1 _ l IOg ((q_ l) Cwnr(Lel) + Tww(Lel))
=T L

provided ¢ >2 is an integer, we obtain the statement of Theorem 4.4 for
M(B)>0. On the other hand, if M(f)=P¥"(B)=0, then t™ =1, and

wir

Cuir(x —»)=0, which implies &\ =¢2 and éf;i,—O. Finally, M(8)=0

wir

implies f; = fge. (see Ref 1), and hence €2 =¢pe. 1

In order to prove Theorems 4.2 and 4.3, we will need several approxi-
mations to the connectivity functions 7,(Lé,) and ti"(Lé,). Additional
approximations will be needed to prove the dichotomy (1.11) and (1.12)
discussed in the introduction. Rather than introducing them as they arise,
we define all of them here, so that the reader may more easily refer back
to the definitions. We will consider several subsets of Z¢, namely the the
“cylinder”

H(L)={xeZ"|0<x,<L} (4.14)
the “tunnel”

T(M)={xeZ)| —M2<x,<(M+1)/2,i=2, ., d} (4.15)
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and the “box”
AL, M)y=T(M)~ H(L) (4.16)

We then consider the following approximations to t,(Lé,) in the cylinder,
tunnel, and box:

sz](L) =Up, (0 Lé)) (4.17)
z’Z““(L, M)=pup a0 Lé)) (4.18)

and
TZOX(L, M)=u, L, 0> L) (4.19)

In all cases b =wir or free. Assuming that they exist, we denote the corre-
sponding correlation lengths by &', &P™(M), and EP°%(M). We also
consider the several approximations to r,ﬂ“‘(Le‘ 1), namely

2(L) = o, mry({0 o Lé1} 0 {|C(0)] < o0}
A {0 o DH(L)}) (4:20)
7L, M) =15, sz s{{0 > L&} {0 4 0A(L, M)}) 421
TP(L) =p,({0 > L&} n {|C(0)] < o0)
n {C(0) < B(H(L))}) (422)

and
F2N(L, M) =, {0 L&} n{C(0)c B(A(L, M))}) (4.23)

and we denote the corresponding correlation lengths—whenever they
exist—by &5, £poY(M), &', and E2°X(M).

We note that the distinction between (4.17)—(4.21) and (4.22), (4.23)
is that in the former quantities the probabilities are computed with respect
to measures that live on the relevant sets A, while in the latter the
probabilites are computed with respect to the full measures u,, but the
events in question occur in the relevant sets B(A).

Our first lemma gives the equivalence of several definitions of the
correlation length &, and will be used at the end of this section to prove
Theorem 4.2.

Lemma 4.6. Let 0<f< oo and g=>1. Let (L) denote t,,(Lé,),
Theel LE1), Thm(L, M), T2L(L), or T2 L, M). Then the correlation length ¢

free
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corresponding to 7(L) exists, and (L) <e~*%. Furthermore, the correla-
tion lengths &M°(M) and ¢£2°%(M) are monotone decreasing in M,

free free

étun(M) — Cbox( M), and

free free

Sree=CRn =Chm=C0n (4.24)

free = “f(ree free
: b : bo
where £l =limy, , o {a(M) and ER20 =lim,y, , o, ER(M).

Proof. Considering an arbitrary subset 4 < Z“ and two points x and
y in A, we note that by the FKG inequality (2.17)

Mo, X Y) 2y f(Xx o Z) pty [z ) (4.25)

for all z e A; furthermore, by the FKG monotonicity (2.18)

Aufrcc.A(xHy) >;lll'rxac:. A’(x(_'y) (426)

for all A" = A containing x and y. Using these inequalities, one obtains sub-
additivity, and hence existence of the corresponding correlation length £,
together with the a priori bound t(L) < e~ for all five connectivity func-
tions 7{L) considered in the theorem. Observing that the monotonicity
(4.26) implies the monotonicity of t§%(L, M) and tj22(L, M) in M, one

obtains the monotonicity of & (M) and £8XM) in M, as well as the

free free

justification of the interchange of limits

free free

log t*"(L, M) log 7" (L, M)

lim lim = lim lim
M- L—w Low M—>ew L

and similarly for t2%*. The only additional ingredient needed in the proof
of the equalities

ree= lim ERa(M)  and  CR = lim EPoX(M)
M- cw M=o
is that fig.. (X <> y) converges to fe(x < y) (and similarly for 72°%),
which is established in the same way as (3.23).
We are left with the proof of the equalities &..=¢S and

free

ERn(M) = ER9(M). To this end, we use (4.25) and (4.26) to get the bound

free

.ufrec(o « "Lél) Z.ufrce.H(nL)(O «> nLél )

n—1

2 [] Hiee rne(iLé & (i+1) Lé;) (4.27)

i=0
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Taking the limit #n — oo, and noting that all but, say, ﬁ terms on the
right-hand side have arguments which are sufficiently far from the boundary,
we obtain

—LJE _ et a
€ fRiree ze tee 2 Tfree(Lel)

which, in the limit L — oo, implies that &g = €. The equality of £ (M)
and E2%Y( M) is proved in the same way. ||

The next two lemmas give several useful relations between the correla-
tion lengths corresponding to (4.20)—(4.23), and are important ingredients
for the proof of Theorem 4.3 (see below) and for the proof of the
dichotomy (1.11) and (1.12) (see Section 5). In order to state the first of
these two lemmas, we introduce for each x, eZ"'n[ — M, M]¢~" the
off-axis connectivity function in the box

TpN(L, M; x 1) = ({0 (L, x )} n{C(0) = B(A(L, M))}) (4.28)
and for each x, € Z¢~! the off-axis connectivity function in the cylinder

FNL; x, ) =pp({0 (L, x )} n{|C(0)| < 0} n{C(0) = B(H(L))})
(4.29)
We note that A, ={C(0)cB(A(L, M))} is an increasing sequence of

events which converges to the event {|C(0)| < oo} N {C(0) = B(H(L))}. As
a consequence,

XL, M;x,) 7 T (L;x,)  as Moo (4.30)

Lemma 4.7. Let 0<f<oo and ¢ 1. Then for b= wir or free, the
correlation lengths éc”' and C‘”"(M ) correspondlng to the connectivity
functions (4.22) and (4.23), as well as the limit éb‘”‘—hmM_,wéZm‘(M )
exist and

EN = Ebox (4.31)
In addition,
£ooX(L, M; x ) < C(B, q) exp[ — L/ES(M)] < C(B, q) exp(— L/ES™)
(4.32)

and
TH(L; x,) < C(B, q) exp(— L/ED") (4.33)

where C(f, g) < o is continuons as a function of # and independent of L
and M.
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Remark. We will later show that £2°% = £ [see Eq. (4.53)] so that
Lemma 4.7, together with Theorem 4.3, gives us yet another characteriza-
tion of £

wir*

Proof. In order to prove the lemma, we first establish the existence
of a constant C(f, ¢) < o such that for all x, eZ"'n[-M, M]*"",

TpoN(Ly, My x ) TN (Lo, My x ) S C(B, q) 3Ly + Ly +1, M;0) - (4.34)

To this end, we first rewrite the left-hand side of (4.34) in a form which
allows us to apply Proposition 2.7. We consider the boxes

A ={xeT(M)|0<x,<L,}
Ay={xeT(M)| L, +1<x,<L,+L,+1)}
A=AL,+L,+1, M)

and the points x_=(L,,x,),x,=(L;+1,x,), and y=(L,+L,+1,0).
Using the translation and reflection invariance of the measures y,, we then
rewrite

F(Ly, M3 1) (Lo, M3 1) = pa(RE_(41) 16l RE, (A7) (435)

where, as in Proposition 2.7, Rﬁn _(4,) is the event that 0 and x_ are con-
nected by a cluster C(O)c:B(A ) and similarly for RT‘: ,(4,). Observing
that B*(A,)n B(A,;)=B(A,)nB*(A,) =, we apply Proposition 2.7 to
obtain

Ho(RG"_(41)) pa(RE (42)) Spp(RG"_(A1) N RY, (A45))  (4.36)

Xg, ¥ X4. ¥

Next we note that all configurations w € Rg™,_(4,) N R(“: ,(45) would con-
tribute to the event Rg“y(A) if the vacant bond {x_, x,) were occupied.
Using finite energy in the form (2.24), we therefore conclude that

Hy(RG (A1) O R, (42)) < C(B, @) 1o(RG(A)) (4.37)

X4y

for a suitable constant C(f, q) < co. Observing that
U RG(A)) = T°(Ly+ Ly + 1, M; 0)

we obtain the subadditivity bound (4.34). By standard arguments, the
bound (4.34), together with the monotone convergence (4.30), implies the
existence of the correlation lengths £°y' and éb‘”‘(M ), and the limit

b°"—11mL_,°°é"°"(M) the a priori bounds (4.32) and (4.33), and the
equality of fcy' and é °*. Finally, we note that by the finite energy relation
(2.24), without loss of generality C(f, ¢) may be chosen to be a continuous
function of 5. |
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 Lemma 4.8. Let 0<f<oo and g 1. Then the correlation lengths
vl and %X M) corresponding to the connectivity functions (4.20) and

(421), as well as the limit £2° = lim,,_,  £2°(M), exist and
o — G = o (438)
In addition,

2995(L, M) < C(B, q) exp[ — L/ESN M) < C(B, q) exp(— L/E%x)  (4.39)

and

fcyl

(L)< C(B, q) exp(—L/EY) (4.40)

where C(f, g) < o0 is continuous as a function of § and independent of L
and M.

Remark. While Lemma 4.7 gives us alternative representations of
&0 in terms of decay rates of infinite-volume connectivities, this lemma
—together with Eq. (4.53) and Theorem 4.3—gives us representations of
¢2) in terms of finite-volume quantities.

Proof. Following the proof of Lemma 4.6, we first establish two
inequalities analogous to (4.25) and (4.26). In order to state them, we
introduce the cylinders

H(L,,Ly)={xeZ| L, <x, <L} (4.41)
the boxes

ALy, L,, My=H(L,, L,)n T(M) (4.42)
[with T(M) as defined in (4.15)], the events

RE, L(A)={Lé, & L,é,} u{C(0) = B(4)} (4.43)

and in particular

R} 1 (M)=RE, (AL, Ly, M) (4.44)
We then claim that for a suitable constant C(f, g) < o0,

Howie, alRE 1 (M) tosie, AR 4 1, 1,(M) < C(B, @) tie, a(RE (M)
(4.45)

lfA D/1(1‘13 LZs M),

Hwir, A'(RFL",‘, LZ(A)) < Ui, A"(RT,‘, 1,2(/1)) (4.46)

822/82/5-6-5
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ifA">A4'> 4, and

Hwir, A(Rﬁn Lz(A )) <”w1r A(R‘zl: L-»(A")) (447)

if A" = A” = A. While the first of these three inequalities is proved in exactly
the same way as (4.34) using finite energy and Proposition 2.6, the second
follows from Proposition 2.6 (and its corollary) alone since R} ;,(4) is an
event of the form (2.27); see proof of Proposition 2.7 and Eq. (3.29). The
last of the inequalities follows from the fact that R]? , (A') < R, (A") if
A cA”.

Given (4.45)-(4.47), the proof of Lemma 4.8 is analogous to that of
Lemma 4.6, with

C(ﬂ3 4)"_ ! /'twir(RO, (nL+n— l)(M))
=C(B, 9"~ ! Hwir, A0, nL +n—1, M)(Ro.(nL+,._ 1)(M))

n—1

> H Hwir, A0 nL +n—1, M)(Ri(L+ D, L+iL+ 1)(M)) (4.48)

i=0
replacing the inequality (4.27). 1
We finally turn to the proofs of Theorems 4.2 and 4.3.

Proof of Theorem 4.2. The existence of the correlation lengths &,
and &,; has already been established in Lemma 4.6, and the inequality
Eiree S € ir follows immediately from the FKG ordering (2.23), so all that
remains to show is left continuity of 1/&...(8). Due to Eq. (4.24), 1/&...(f)
is a limit of finite-volume (and hence continuous) quantities, namely

box,
1 hm lim log Tfree(L’ M)

él‘ree(ﬁ)= QM—-OO L— L (449)

As shown in the proof of Lemma 4.6, the finite-volume connectivity
7oL, M) is subadditive in L and monotone increasing in M. It is also
monotone increasing and continuous in f. Choosing suitable subsequences,
e.g, L =2" and noting the minus sign in (4.49), this gives 1/&...(f) as the
limit of a decreasing sequence of continuous decreasing functions, and
hence establishes the desired left continuity. |

Proof of Theorem 4.3. We start with the obvious bounds
L, M) <EPL) < T(L) K T ofom(n) (450)

nzl
and

TN L, M) < tiem(L) forall M<L (4.51)
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Now consider the event { C(0)= B}, where B is some given set of diameter
L. Using suitable rotations and translations by vectors t € Z9, |t| < L, each
such cluster B can be transformed into a cluster B< A(L, 2L) connecting
the origin to a point x =(/, x, ) in the boundary of A(L, 2L). As a conse-
quence,

tdem( 1) <dQRL+ 1) Y YL, 2L, x,)

xezd-!
EYREYA

<d(2L 4 1)*~ 1 exp(—L/Eb>) (4.52)

where we have used the a priori bound (4.32) of Lemma 4.7 in the last step.

Combining the bounds (4.51) and (4.52) with Lemma 4.7, we
immediately obtain the existence of the correlation length £5*™ and the
equality of £4@™ and £%°*. Combining the bounds (4.50) and (4.52) gives
the existence of & and the equality of £ and €%, provided &2°* < co. If,
on the other hand, &5°* = %' = 0, we use the bound TP(L) < ti(L)< 1 to
prove that the inverse correlation length exists and is equal to zero. Thus
we have the existence of the correlation lengths £;" and £5°™ and the
equality

El;ox ﬁn édlam (45 3 )

The final equivalence of Theorem 4.3, namely &) =¢% for integer ¢ >3,
follows immediately from relation (3.50) of Theorem 3.5.

We are therefore left with the proofs of the inequality ¢ <& and
the upper semicontinuity of 1 /Cf:,‘,‘, Noting that 7" is the probability of an
event of the form considered in Proposition 26 the inequality follows
immediately from the infinite-volume limit of (2.31). To prove the upper
semicontinuity, we note that by Lemma 4.8 and Eq. (4.53), 1/¢™ can be

written as a limit of finite-volume quantities, namely

1 1 1 ) . log t29%(L, M
=== — lim lim 2L
éw“ éwnr éwu’ M- Lo L

(4.54)

Combined with the a priori bound (4.39) of Lemma 4.8, this implies
e~ l/ﬁrvl»"i‘r =sup {(M) l/L}
LM (B, q)

L oy o8 CP.0)—log 850 )
ff’v‘l’r LM L

and hence

(4.55)
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Since both log C(B, q¢) and —log t5%(L, M) are continuous and hence
upper semicontinuous functions f, and since the infimum of upper semi-
continuous functions is upper semicontinuous, this establishes the upper
semicontinuity of 1/&% |

In the above proof, we actually obtained one additional equivalence
which is not stated in Theorem 4.3, but which will be necessary in the proof

of our dichotomy. Namely, by Eq. (4.53), we have:

Corollary. Let 0<f< oo and ¢ 1. Then &%= ¢,

5. THE TWO-DIMENSIONAL DICHOTOMY AND
RELATED RESULTS

5.1. Heuristics and Preliminaries

The goal of this section is a proof of the two-dimensional dichotomy,
the principal part of which is the duality relation (1.11) for all § in the
low-temperature regime. In this subsection, we discuss the heuristics of the
relation, state our results, and briefly review two-dimensional duality in the
random cluster model. In the next two subsections, we derive upper and
lower bounds on ™ and its approximations in terms of 7y, and
approximations to tf% . Finally, in the fourth subsection, we put these
bounds together with the equivalence lemmas of Section 4 and the
ergodicity theorem of Section 2 to prove the dichotomy.

In order to explain the heuristics of the duality relation (1.11), let us
consider the representation of the random cluster model in terms of the
order—disorder contours introduced in ref. 28 (see also ref 4). In this
representation, contours are defined as {the connected components of ) the
boundaries between regions of occupied bonds, regarded as ordered
regions, and those of vacant bonds, regarded as disordered regions. Notice
that in the wired measure, any finite cluster of occupied bonds must be
separated from the infinite occupied cluster by a (disordered) region of
vacant bonds. Thus all configurations contributing to it (x—y) have
at least two contours surrounding the points x and y—one being the
boundary between the cluster connecting x and y and the disordered
region, and the second being the boundary between the disordered region
and the infinite cluster.

Let us begin by considering systems with first-order transitions at the
transition point f,. Since both the ordered and disordered phases are
stable at f,, the two contours need not remain near each other. Indeed,
under similar circumstances, it i1s proved in ref. 30 that two such order—
disorder interfaces tend to behave like independent interfaces, leading to a
surface tension o,, between two ordered phases which is exactly twice the
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surface tension o,, between an ordered and a disordered phase. Now, in
our case, the minimal combined area of the two interfaces is 4 |x —y|.
Moreover, we expect that large interfaces are suppressed at a first-order
transition. Thus we expect %% (x — y) to decay exponentially with a rate

40,,=20,,, which would imply
& =20, (5.1)

Obviously, this relation should also be satisfied trivially at f, for systems
with second-order transitions—both sides should vanish.

Now consider the regime f> f, in a system with either a first- or
second-order transition. In this regime, the disordered phase is unstable, so
that large regions of vacant bonds are suppressed. Thus the two contours
surrounding x and y tend to bind together, leading to a single order-order
interface surrounding the points of minimal area 2|x — y|. This leads to a
exponential decay with a rate 2¢,, and hence again the relation (5.1).

Note that due to the duality relation o,,(f8) =1/&..(*), Eq. (5.1) is
equivalent to the desired relation (1.11)

It would be interesting to make the above heuristic arguments
rigorous. While this could presumably be done for sufficiently large ¢, a
direct translation of these heursitics into a proof for arbitrary g seems
much more difficult. We therefore follow a different route, based on our
inequalities involving decoupling events (Proposition 2.6) and the equiv-
alences established in Section 4.

Before stating our main result, let us recall that the dual inverse tem-
perature f* is defined by

(=1} —1)=¢q (5.2)

Our main result is:

Theorem 5.1. Let d=2, ¢>1 real, and 0 < < 0. Then either

PE(B*)=0 and  &U(B)= 5wl B*) (53)
or
PE(p*)>0  and  ER(B) =Ll B) (54)

Remarks 1. If, in addition, ¢ >3 is an integer, it follows easily
from the results of the last section and the duality relation (1.13) (a proof
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of which is given in Section 5.4) that (5.3) and (5.4) may be replaced by
the dichotomy: Either

Pis(pt)=0 and B ZEUP =18 (53)

or

PE(*)>0  and  EUNB) 2 ERUB) = Lneel B) (54"

2. It follows from the duality relation (1.13) and the monotonicity of
P> [b=free or wir] as a function of § that the first branch of the
dichotomy [1e., (5.3) or (5.3')] occurs when = f,, the self-dual point,
and that the second branch [ie, (54) or (5 4')] occurs whenever
B<p,=inf {B|M(B)>0}. It is presumably the case that §,=p,, but
rigorously this is only known for sufficiently large g (see, e.g., ref. 27, where
this is shown for g > 25).

We close this subsection with a few remarks on duality. As usual, the
dual site lattice (Z*)? is the set of points x* = (x¥, x¥) € (Z + 3)* with half-
integer coordinates, and the dual bond lattice B¥ is the set of nearest
neighbor bonds in (Z*)% To each bond b € B,, there corresponds a dual
bond b* € B which has the same midpoint as b. Similarly, to each con-
figuration @ on B<B,, there corresponds a dual configuration w* on
B* ={b*|be B}, given by

if wb)=1

if w(b)=0 (535)

0
w*(b*):{l

We will sometimes refer to the bonds 5* € Bf for which w*(b*)=1 as
occupied dual bonds. Given a finite box

A={xeZ*|0<x, <L, —M2<x,<(M+1)/2}
and the corresponding set of bonds B*(A), one defines the dual of 4 as
A* = {xE(Z*)2 | 3y e (Z*)* with {x, y) e(B*(A))*} (5.6)

Note that in general 4 and A* are not of the same cardinality. Using the
appropriate Euler relation to relate #(w) to #{w?*), it is straightforward
to check that for a given configuration w on B*(A) and its dual w* on
B(A*),

Gwir.ﬁ.A(w)=Gfree.ﬁ"./1‘(w*) (57)
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where we have explicitly indicated the temperature dependence of the
weights (2.14) and (2.16). Thus for each 4 € Z5+(,),

Howir, B,A(A)=.u|'ree. ﬁ‘.A*(A*) (58)

where 4* is the event A* ={w*|we 4}. In the next two subsections, we
will often characterize events 4 € %+ 4, in terms of the corresponding dual
events. A typical example is the event that the cluster of the origin does not
touch the boundary 04, which is equivalent to the existence of a dual
cluster in B(4*) containing a closed loop which surrounds the origin.

5.2. The Upper Bound

Our upper bound is stated in terms of the finite-volume approximation
£29* to i ; see Eq. (4.21). As in the last subsection, we will often explicitly

indicate the # dependence of the relevant quantities.

Theorem 5.2. Let d=2,0<f < o0, and ¢ > 1. Then there exists a
‘constant C,(f, g) < oo such that

o f(L, M) < Co((B, q)(Tree, po((L— 1) €1))° (59)

Proof. Let A denote the box A(L, M), see Eq. (4.16). By its defini-
tion (4.21), the connectivity function ”Sff,‘ L, M) is the probability, in the
measure A, p 4, of the event R§"(A)= {0 Lé,} n {0+ 04}. Equiv-
alently, R}",(A) can be defined as the intersection of the event {0« Lé,}
and the event that there is a closed loop y* of occupied dual bonds

surrounding the points 0 and Lé,. Consider the points
xt =(—1/2, £1/2) and yi=(L+1/2, +£1/2)

in A*. Given the fact that the connection from 0 to L&, must occur without
touching 04, it is clear that the dual loop y* must consist of four pieces:
the bond {x*, x* ), a path p% connecting the point x% to the point y*,
the bond {y*,y*>, and a path y* connecting the point y* to the
point x*. Moreover, the two paths y%:x% —y% must occur in
B(A*N\{<{x*,x%>,{y*,y%>}. Let us denote by R}, R%, R*, and R%
the four events described above, namely (dual) occupation of the bond
{x*,x%), the bond {y*,y%*> and some paths p%:x%¥ —y% in
B(A*\{<{x*,x% ), {y*,y% >}, respectively. Then Rg",(4) = {0 Lé,} n
R¥NRENR* nR*.

Consider now a configuration @ € Rf n R%¥ n R* n R*% . It is an easily
verified geometrical fact that we R{",(4) if and only if the dual cluster
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joining x* to y*and the dual cluster joining x* to y* are connected only
via the two bonds (x*,x* > and {(y*,y% ), ie, if and only if there is no
dual connection between x* and x* in the set B(A*)\{{x*, K x*),
{y*,y*>}. Using finite energy in the form (2.24) to convert the two
occupation events R} and R} to the events that the bonds {(x* , x* ) and
{y*,y* > are vacant, and the duality relation (5.8) to transform the
MEASUTe [y, 5 4 iNto the free measure g, g« 4+, We therefore obtain

Aa?:‘ﬂ(L M)<C (ﬂ q lufree p*. A“({X* Hy }
N{xt oyt n{x* »xt}) (5.10)

with C|(f,q) <o if 0 < f < 0.
Next, we note that by Proposition 2.8,

Hiree, o A1XE o XN {x% o yh} n{x* »xi})

<:ufree.ﬂ*./t*(xﬁ Hyj—)lufree. ﬂ"./l‘(x"i Hyt) (511)
Using the monotonicity (2.18), we obtain
Hiree, B, A"(J\j; ‘—’J’+) <1ufree /1“‘( Hyi)_.cfrec ﬂ'((L+ l)el) (5 12)
which, combined with (5.10) and (5.11), proves the theorem.

5.3. The Lower Bound Our lower bound is given in terms of the
approximation 75 to tfie°; see Eq. (4.23).

fin »

Theorem 5.3. Let d=2, 0 <f < o0, and g = 1. Then there exists a
constant C,(f, ¢) > 0 such that for all positive integers M and L

Toke f(L81) 2 Co B, ™ (337 po(L~ 1, M))? (5.13)

Proof. In order to prove the theorem, we introduce several sets in
both Z? and in its dual (Z*)2 Consider the dual boxes

A% ={x*e(Z*) | j<xi<L—L i<xi<2M + 1}
A% ={x*e(Z*P|3<xi<L-4 —2M+ ) <xi< -}

dual points
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dual bonds

o=t =), bL =i i+

and dual vertical lines y;" and y¥ joining the point x* —&, to the point
x% —é,, and the point y* + ¢, to the point y* + ¢é,, respectively. In addi-
tion to these sets in (Z*)? and B¥, consider the points

fi= iMez and J~71=LéliMé2

in Z? and the vertical lines 7, and 7, in B, that join the point % _ to the
point X, and the point 7 _ to the point j ,, respectively.

Consider now the events R% that the points x% and y% are connected
by a path of dual occupied bonds in A%, and the events R} that all bonds
in y¥ub% ,ub* . (a=Ir) are occupied. The event R* n R* n R}n R}
then clearly implies the existence of an occupied dual path surrounding the
points 0 and Lé,, so that the event {0« L&} nR* "nR* NR}n R¥is
contained in the desired event Ry", = {0 L&,} n {|C(0)| < 0}. As a con-
sequence

wnr ﬂ(Lel) = wir, /}(er
2 pir. ({0 Lé} nRY " R* "R}NR}) (5.14)

Our goal is to modify the event in the argument of (5.14) so that (1) the
event {0« L&} is guaranteed to occur, and (2) the two dual paths across
A* and A* carry decoupling events that allow us to apply Proposition 2.6
to factor their probabilities. We begin by degrading our estimate (5.14) by
constructing vertical lines of occupied (direct) bonds:

Tome f(L81) 2 poie s({w505 =1} n {0 Lé;} nRY " R* N R} R}

wu‘ ¥/

Here, as usual, wg denotes the configuration restricted to B. Using finite
energy in the form (2.24) to flip the 4M+6 bonds in yFub% ,u
b* ,uy¥ub* ,ub* ,, we then obtain

Tone g(L8)) 2 C(B, )*™* Sptir p{ @505, =1} n {0 > Lé,} nR% AR*)

with a suitable constant C(f, g) > 0.

Consider now the events (R*)™ that x% and y% are connected by
dual clusters C*(x%)c B(A4%), ie, by clusters that lie entirely within
B(A%), and hegnce are surrounded by decoupling circuits of occupied
(direct) bonds in (B*(A%))*. Clearly R% > (R*%)™ and thus

T (Lé))

w1r B
2 C(B, @*™* ¢t f{0505,=1} 0 {0 & L&} N (R%)™ N (RE)™)
(5.15)



1290 Borgs and Chayes

We now claim that

{ws05,=1} n{0 = Lé\} N (R%)™ A (RE)™

={ws05=1} N (R%)™ A (R )™ (5.16)

In order to see this, let @ be a configuration in (R* )™, As noted above,
the condition C*(x% )< B(A*) implies the existence of a closed path of
occupied bonds in (B*(A4* ))* surrounding x* and y* . Given we (R*)™,
let y be the innermost such path. Since y surrounds x* and y%, but lies
within (B* (A% ))*, it must visit the points ¥, and j, ; thus it provides a
connection between ¥, and j, by a path of occupied bonds. Observing
that the vertical paths §, and j, connect the point 0 to the point ¥, and
the point Lé, to the point j,, we see that there is automaticaily an
occupied path from 0 to Lé,, which completes the proof of (5.16).

Using once more finite energy, the relations (5.15) and (5.16) together
with the duality relation (5.8) now imply that

WII‘ ﬂ(Lel > C()B q 4M+6 wnr ﬂ({w U'}’,— 1} ﬂ(R* )ﬁn M (R* )ﬁn)
>C(ﬁ,q)8M+6uwir.p((Ri)““ N (R%)™)
=C(B, )*M* € pree. ,,-.(R““ A R™) (5.17)

where er are the events dual to (R%)™.
Fmally, we use the fact that R™ and R™ are events of the form con-
sidered in Proposition 2.7, so that

)ul'ree. If‘(RT ! Rﬁ—n) >1ufree, ﬁ‘(RT) /'tfree‘ﬂ‘(Rﬁ_n) = (fll?rgx(L’ M))2 (518)
This completes the proof of Theorem 5.3. ||

Notice that, in contrast to the proof of Theorem 5.2, the above proof
does not invoke monotonicity properties which depend on boundary con-
ditions. Thus it can be used equally well to give a lower bound on it ,
namely:

Corollary. Let d=2, 0<f<oo, and g=1. Then there exists a
constant C,(f, ¢) >0 such that for all positive integers M and L

Thee f(L81) = Co B, )™ (2337 p(L— 1, M))? (5.19)

5.4. The Dichotomy and Percolation Probabilities

In this subsection we prove Theorem 5.1. We start with a proposition
which is essentially a corollary to the upper and lower bounds of Theorems
5.2 and 5.3.
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Proposition 5.4. Let d=2, 0<f < 0, and g = 1. Then

EondB)=38geel B%)  if PI(B*)=0 (5.20)
and
EM(B)=CneB) i PU(B)=0 (5.21)

Proof. Introducing the notation &£P9(M;pB) and E"°"(M B) to

wir free

indicate the § dependence of the correlation lengths £°9%(M) and EP°X( M)

wir free

corresponding to £5%* and #£°%, the upper and lower bounds of Theorem

Wll'

5.2 and 5.3 imply that

EX(M; B) < 1Epeel B*) (5.22)
and
1Ebox(M; %) < EM () (5.23)

Taking the limit M — oo, and observing that the left-hand side of (5.22)
goes to &2 (B) by Lemma 4.8 and the corollary at the end of Section 4,
while the left-hand side of (5.23) goes to c?;;e( f*) by the same corollary

and Lemma 4.7, we conclude that

'(:::e(ﬂ* <é’»iv‘1‘r ﬂ) < ’7éfree(ﬂ* (524)

Since &M (B*) = Epee( B*) if PT°(B*) =0, this implies the first part of the
proposition. If P¥(8) =0, then & (B) =¢&,:(B). In addition, by the results

of ref. 1, fyic p=FHiee s Whenever PT(B)=0 and hence &p..(f) =il B).
This implies the second part of the proposition. ||

In order to complete the proof of Theorem 5.1, we use the fact, proven
in Section 2.4, that the free measure y.. is ergodic under any nontrivial
subgroup of the translation group (Theorem 2.10). Since, in addition,
HUiee 18 an FKG measure which is invariant under horizontal and vertical
translations and axis reflections, a bond percolation analog of the theorem
of ref. 18 applies, leading to the following result.

Theorem 5.5. Let d=2, 0<f<o0, and ¢=1, and assume that
P™(f)> 0. Then, with probability one with respect to the free measure

Hicee. p» any finite set of sites in Z* is surrounded by a circuit of occupied
bonds.

Corollaries. Let d=2, 0<f <, and ¢= 1. Then

(1) PI() PS(5*) =0 (5:23)
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(2) PT™¢(B)=0 for all < B,. In particular, P"(f) is left continuous
at f,.

(3) If P‘:O"(ﬂ) =0 or Pz‘:e(ﬂ) >0’ then .ufree.ﬁ( ' )—_—ﬂWihﬂ( : )’ and’ in
particular, P¢(f) = P¥(p).

Proof. As noted above, the theorem follows from (a bond percola-
tion analog of) ref. 18 and Theorem 2.10. Corollary 1 then follows
immediately, and Corollary 2 also follows easily—see Eq. (1.14) and the
paragraph preceding it. The first part of Corollary 3, namely that
PYT(B) =0 implies gee p( - ) =Hwir p( - ), is a result of ref. 1. That equality
of the measures is also implied by P™(8)>0 follows from (5.25), ref. 1
and the self-duality of the model.

Remarks. 1. Theorem 5.1 (the dichotomy) now follows imme-
diately from Proposition 5.4 and Eq. (5.25).

2 It turns out that, although not explicitly stated, Corollary 2 has
already been established by Welsh®® in the course of the proof of his
Theorem 7.3. We note that Welsh’s proof does not require ergodicity, but
only stationarity of the measure u... Instead it invokes uniqueness of the
infinite cluster and an unpublished argument of Zhang.

3 We expect that left continuity of P™¢(8) at the transition point
holds in all dimensions provided g > 1. However, we do not expect P™( )
to be right continuous at the transition point if the system has a first-order
transition; indeed, for ¢ sufficiently large, this can be established using
Pirogov-Sinai theory, as used, e.g., in ref. 28. This is to be contrasted with
the behavior of P¥r(f). By standard percolation arguments,®> namely
expressing P (f) as the decreasing limit of the finite-volume quantities
(3.4) (which are continuous and nondecreasing in ), P¥(f) is right con-
tinuous for all # and all g>1 in dimension d > 1. However, in dimension
d>2, convergent expansions have been used to show P¥(f) is not left
continuous at the transition point provided ¢ is sufficiently large'® (see
also refs. 27 and 28).

4. Corollary 3 implies that in two dimensions the Gibbs state is
unique at all f except those for which P™(8)=0 while P¥r(8)>0.
Presumably, this never occurs for systems with second-order transitions
(9<4 in d=2), and occurs only at a single point—the transition
point—for systems with first-order transitions (¢ >4 in d=2). Again, this
can be proven via expansion methods in d> 2 for ¢ sufficiently large.

We conclude this section with a little result which is an easy conse-
quence of Proposition 54. The result shows that continuity of the
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magnetization at f§, ensures criticality of the transition, i.e., divergence of
the correlation length(s).

Proposition 5.6. Let d=2 and ¢>1. Then M(B,)=P¥"(8,)=0
1mp11es éwlr 180 o0 and hﬁl’lCC also éfree lBa) =éfree(ﬁa) =éwir(ﬁo) =0

Proof. By the assumption P¥"(8,)=0, the FKG ordering of states
(2.23) and the definition of §,, we have 0= P™¢(B,) = P™(8%), and hence
by the first branch (5.20) of Proposition 5.4

ér\:/':r(ﬂu - 7éfree )= %éfree(ﬂo) (526)

On the other hand, again by the assumption PY'(8,)=0, we have the
second branch (5.21) of Proposition 5.4, namely

55:/?r(ﬂo) =éfree(ﬂa) (527)

From (526) and (5.27), we conclude that either &;..(f,)=0 or
Epee( B,) = 0. The first case is easily ruled out by considering, e.g., Tg.(é;).
That the other correlation lengths also diverge is an immediate conse-
quence of the remark following Theorem 4.3. |

APPENDIX. REFLECTION POSITIVITY AND THE
TRANSFER MATRIX

The concept of reflection positivity and its consequences are well-
known tools in the context of field theory. For the convenience of the
reader we give a brief review in this appendix.

We consider a (finite or infinite) lattice 4 =Z? which is invariant
under reflections at a plane 2. Here X is either a lattice plane or a plane
which lies halfway between two lattice planes. Denoting the reflection at X~
by r, we then decompose A4 as A=A, uA_, where A are the points on
one side of X, A_ =r(A,) are the points on the other side of X, and
A_nAad,.=2nA (which is of course empty if 2 lies between two lattice
planes).

For a local observable 4 with support supp A< 4 ,, one introduces
the reflected observable r(A4) as

(r(4))(o) = A(r(a)) (A1)

where r(g), =0,,. Reflection positivity of the Potts model is the statement
that

(r(A) A), 420 (A2)

The proof of (A.2) is standard; for the strategy, see, e.g., refs. 12 and 36.
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The inequality (A.2) has several important consequences. Here we are
mainly interested in the representation of truncated expectation values as
matrix elements of a suitably defined transfer matrix 7. In order to define
the transfer matrix 7 in the setting considered here, we need, in addition
to the reflection invariance of 4, that A is invariant under translations per-
pendicular to 2. We therefore assume that A is of the form

A=ZXA1

where A, is a (finite or infinite) sublattice of Z?~'. We then consider the
algebra &/, of local observables with support in A4, where from now on

A, ={(x,%)eZ'|x>0,Xe4,}

while X = {(x, ¥)eZ9x=0, Xe 4,}. Due to (A.2), the equation

(A4, B :={r(4) B} 4 (A3)

defines a positive semi-definite scalar product over 7, . Dividing out the
corresponding null space .#° and completing the resulting space in the
usual way, this leads to the definition of a Hilbert space # = .7, /A"

Next, we introduce, for each local observable 4 € o7, the observable
TA which is obtained from A by translation by one lattice unit in the
positive direction perpendicular to Z. It is an easy consequence of the
Cauchy-Schwarz inequality for the scalar product (A.3) (see ref 36 for
details) that T obeys the inequalities

0<C(A, TA) <<{4, 4 (A4)

The operator T therefore defines a positive transfer matrix, which obeys the
inequalities

0T«

as an operator on . Observing that the vector Q corresponding to the
constant function 1 e .7, is an eigenvector of T with eigenvalue 1, we note
that the norm of T is one.

We finally consider the interpretation of truncated expectation values
in the above Hilbert space representation. Since

KA 5 4=(H{A) 1D, ,=K4, 2> (A.5a)
while

(T"A%, =L, T"4)=(T"Q, 4> ={2, A (A.5b)
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one immediately obtains

CH{A); T"A) 4, 4= KA, T"4) — <4, 252, 4) (A.6)

Introducing the projection operator P, onto the Hilbert space orthogonal
to 2, we find that Eq. (A.6) becomes

Cr(A); T"AYy 4=C(A, T"4,) (A7)
where
A, =P A=A—-{2,A>Q (A.8)

If the support of A is a subset of the lattice plane X, r(4)=A, and
Eq. (A.7) reduces to

</T; T"A>b./l=<AL, T4, (A9)

Equation (A.9) is an important technical tool in the proof of the existence
of the correlation lengths &{!) and &2

wir wir*

Remark: In the context of Euclidean field theory, the direction per-
pendicular to X' is often interpreted as the Euclidean time. The Hilbert
space a J# =/, /A4 is then nothing but the quantum mechanical Hilbert
space of the considered model, and T is the generator of the Euclidean time
translations, i.e. T=e °H, where ¢ is the lattice spacing and H is the
Hamilton operator of the theory.

However, # and T have no such interpretation for the classical Potts
model. This is due to the fact that here A is the lattice of a classical system,
and not a lattice approximation to Euclidean space-time.
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